欢迎登录材料期刊网

材料期刊网

高级检索

以SnCl2·2H2O和TiCl4为原料,采用水热法制备钛掺杂SnO2微球.通过X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)对材料的物相和形貌进行表征,并测试材料对乙醇的气敏性.结果表明,所得钛掺杂SnO2微球呈四方金红石结构,钛离子掺入并没有改变SnO2晶体结构,也无新晶相出现;由钛掺杂SnO2微球制得的气敏元件在工作温度350℃条件下,对乙醇有较高灵敏度,如对50 ppm乙醇的灵敏度为2.053,响应时间在10 s内,恢复时间也在3 min内;并对其气敏机理进行了进一步探讨.

参考文献

[1] Ming-Ru Yu;Gobalakrishnan Suyambrakasam;Ren-Jang Wu;Murthy Chavali .Performance evaluation of ZnO-CuO hetero junction solid state room temperature ethanol sensor[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2012(7):1713-1718.
[2] 周小岩,黄柳宾,李传勇,刘晓龙.乙醇气体的浓度对氧化锌纳米棒气敏元件电学性能的影响[J].人工晶体学报,2012(05):1313-1317.
[3] 赵晓华,李珍珍,娄向东,张宁.溶胶-凝胶合成NiO-ZnO复合物及其乙醇敏感特性研究[J].人工晶体学报,2013(04):716-722.
[4] Y. J. Chen;L. Nie;X. Y. Xue;Y. G. Wang;T. H. Wang .Linear ethanol sensing of SnO_(2) nanorods with extremely high sensitivity[J].Applied physics letters,2006(8):083105-1-083105-3-0.
[5] Du, H.;Wang, J.;Su, M.;Yao, P.;Zheng, Y.;Yu, N..Formaldehyde gas sensor based on SnO _2/In _2O _3 hetero-nanofibers by a modified double jets electrospinning process[J].Sensors and Actuators, B. Chemical,2012:746-752.
[6] Shriram B. Patil;P.P. Patil;Mahendra A. More .Acetone vapour sensing characteristics of cobalt-doped SnO_2 thin films[J].Sensors and Actuators, B. Chemical,2007(1):126-130.
[7] Huang, H;Lee, YC;Tan, OK;Zhou, W;Peng, N;Zhang, Q .High sensitivity SnO2 single-nanorod sensors for the detection of H-2 gas at low temperature[J].Nanotechnology,2009(11):115501-1-115501-5-0.
[8] Kuang Q;Lao CS;Wang ZL;Xie ZX;Zheng LS .High-sensitivity humidity sensor based on a single SnO2 nanowire[J].Journal of the American Chemical Society,2007(19):6070-6071.
[9] Xi, GC;Ye, JH .Ultrathin SnO2 Nanorods: Template- and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing, and Surface Adsorption Properties[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2010(5):2302-2309.
[10] Yu-Fen Wang;Bing-Xin Lei;Yuan-Fang Hou;Wen-Xia Zhao;Chao-Lun Liang;Cheng-Yong Su;Dai-Bin Kuang .Facile Fabrication of Hierarchical SnO2 Microspheres Film on Transparent FTO Glass[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2010(4):1679-1686.
[11] Zhu, S.;Zhang, D.;Gu, J.;Xu, J.;Dong, J.;Li, J. .Biotemplate fabrication of SnO_2 nanotubular materials by a sonochemical method for gas sensors[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2010(4):1389-1400.
[12] Qi Q;Zhang T;Zheng XJ;Fan HT;Liu L;Wang R;Zeng Y .Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference[J].Sensors and Actuators, B. Chemical,2008(1):36-42.
[13] Kong XH;Li YD .High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature[J].Sensors and Actuators, B. Chemical,2005(2):449-453.
[14] Sanju Rani;Somnath C. Roy;M.C. Bhatnagar .Effect of Fe doping on the gas sensing properties of nano-crystalline SnO_2 thin films[J].Sensors and Actuators, B. Chemical,2007(1):204-210.
[15] Songlin Shi;Yonggang Liu;Yujin Chen;Jingyuan Zhang;Yanguo Wang;Taihong Wang .Ultrahigh ethanol response of SnO_2nanorods at low working temperaturearising from La_2O_3loading[J].Sensors and Actuators, B. Chemical,2009(2):426-431.
[16] Gaik Tin Ang;Geik Hoon Toh;Mohamad Zailani Abu Bakar .High sensitivity and fast response SnO2 and La-SnO2 catalytic pellet sensors in detecting volatile organic compounds[J].Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B,2011(3):186-192.
[17] X.M. Liu;S.L. Wu;Paul K. Chu .Characteristics of nano Ti-doped SnO_2 powders prepared by sol-gel method[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):274-277.
[18] 曾文 .SnO2/TiO2体系气敏性能及其机理研究[D].重庆大学,2011.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%