欢迎登录材料期刊网

材料期刊网

高级检索

通过对碳纤维/PEEK复合材料(纤维体积分数30%)的单调拉伸、应力控制循环、应变控制循环实验,对该材料的应力、应变循环特性以及棘轮行为的率相关、时相关特性进行了系统的研究。研究表明:与PEEK树脂基体材料相比,加入碳纤维使材料的抗蠕变性能有所提高。在应变控制循环实验中,响应应力幅值与应变加载速率和应变加载幅值密切相关;在应力松弛效应的影响下,响应应力幅值随着应变峰值保持时间的增加而减小。室温下,碳纤维/PEEK复合材料在非对称应力循环中产生明显的棘轮应变,并且对加载应力幅值和平均应力具有明显的依赖性,此外,当在较低的加载速率和具有一定峰值保持时间情况下,棘轮应变显著增强。

The uniaxial time dependent cyclic of carbon fiber/polyether ether ketone(PEEK) composite was studied experimentally. The volume fraction of carbon fiber was 30% The property under stress control led and stress- controlled loading and the ratcheting behaviors of carbon fiber/PEEK composite were discussed under different conditions. It was shown that the creep behavior of carbon fiber/PEEK composite is better than that of PEEK. In the experiment of strain- controlled cyclic, the stress amplitude has a close relationship with the applied strain loading rate and strain amplitude. Due to the stress relaxation, the responded stress amplitude will decreases as the hold time at strain peak increase. The ratcheting occurs in the composite to asymmetrical stress-controlled, and the ratcheting strain depends on the stress amplitude and stress loading rate. The stress holding time and low loading rate lead to an increased ratcheting strain. The carbon fiber will fail as the peak holding time beyond the range.

参考文献

[1] 康国政,高庆.循环稳定材料的棘轮行为Ⅰ:实验和本构模型[J].工程力学,2005,22(2):206-211.
[2] 杨显杰,康国政,高庆,孙亚芳.304不锈钢的高温单轴应变循环与棘轮行为[J].金属学报,1999,35(7):698-702.
[3] 陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展[J].力学进展,2003,33(4):461-470.
[4] 康国政,高庆.棘轮行为及其本构模型和工程应用的研究进展[J].应用力学学报,2008,25(3):455-461.
[5] 蔡立勋,罗海丰,高庆.用于棘轮变形预测的棘轮演化统一模型研究[J].航空学报,2002,23(1):17-22.
[6] Chaboche J L,Nouailhas D.Constitutive modeling of ratchetingeffectsⅡ:Possibilities of some additional kinematic rule[J].ASSMEJ Eng Mater Technol,1989,111(4):409-416.
[7] Kang Guozheng,Gao Qing,Yang Xianjie.Uniaxial andnonproportionally multiaxial ratcheting of SS304stainless steelat room temperature:Experiments and simulations[J].Int Jof Nonlinear Mechanics,2004,39(5):843-857.
[8] 郭素娟,康国政,阚前华.颗粒形状对复合材料单轴棘轮行为及其细观塑性变形特征的影响[J].复合材料学报,2008,25(1):153-160.
[9] 康国政.δ-Al2O3短纤维增强Al合金复合材料的拉伸力学行为研究[J].力学与实践,2000,22(4):22-24.
[10] Elhem Ghorbel.A viscoplastic constitutive model forpolymeric materials[J].International Journal of Plasticity,2008,24(11):2032-2057.
[11] Drozdov A D,deC Christiansen J.Cyclic elastoplasticity ofsolid polymers[J].Computational Materials Science,2008,42(1):27-35.
[12] Deseri L,Mares R.A class of viscoelastoplastic constitutivemodels based on the maximum dissipation principle[J].Mechanics of Materials,2000,32(7):389-403.
[13] Bergatrom J S,Hilbert L B,Jr.A constitutive model forpredicting the large deformation thermomechanical behavior offluoropolymers[J].Mechanics of Materials,2005,37(8):899-913.
[14] Zhang Zhe,Chen Xu,Wang Tao.A simple constitutive modelfor cyclic compressive ratchetting deformation ofpolyteteeafluoroethylene(PTFE)with stress rate effects[J].Polymer Engineering and Science,2008,10(2):29-36.
[15] Chen Xu,Hui Shucai.Ratcheting behavior of PTFE undercyclic compression[J].Polymer Testing,2005,24(7):829-833.
[16] 陈茁玮,康国政,刘宇杰,王艳峰,徐伟.玻璃短纤维增强树脂基复合材料的单轴时间相关棘轮行为实验研究[J].复合材料学报,2009,26(6):156-160.
[17] 王艳峰,康国政,刘宇杰,陈茁玮,徐伟.玻璃长纤维增强树脂基复合材料的单轴时间相关棘轮行为实验研究[J].复合材料学报,2009,26(6):161-166.
[18] 潘斗兴,朱志武,康国政,刘宇杰.PEEK树脂单轴应变循环特性及时间相关棘轮行为的实验研究[M]∥断裂与疲劳结构安全性评定.成都:西南交通大学出版社,2009:241-246.
[19] Raghava R,Caddell R M,Yeh G S Y.The macroscopic yieldbehaviour of polymers[J].Materials Science,1973,8(2):225-232.
[20] 张艳红,赵东宇,李滨耀,余赋生.短碳纤维增强聚芳醚酮复合材料的断裂机理[J].黑龙江大学自然科学学报,2000,17(4):76-78.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%