机械工程材料, 2008, 32(10): 60-66.
Ag/YBa2Cu3O7-δ自润滑复合材料的力学及摩擦性能
丁巧党 1, , 李长生 2, , 董丽荣 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"钛及钛合金具有高比强度、优良的耐蚀性、良好的高温性能,在现代航空航天、军事工业、民用工业中占据越来越重要的位置.但是,钛及钛合金自身硬度低、耐磨性能差的缺点限制了它的进一步应用.介绍了几种能改善表面性能的表面处理技术在钛及钛合金上的应用以及这些处理技术的特点和最新进展.包括:激光熔覆表面处理、CVD、PVD、热扩散法和表面纳米化,以及多组元和多层涂层技术.","authors":[{"authorName":"何利舰","id":"38168ada-b8e2-458d-b77f-ae01e18cadc8","originalAuthorName":"何利舰"},{"authorName":"张小农","id":"791f5ba0-e2b4-473d-a03b-e482a108e5ae","originalAuthorName":"张小农"}],"doi":"10.3969/j.issn.1001-7208.2005.03.011","fpage":"39","id":"acb8bfdd-79ff-4c1e-8580-5a57fb9c476d","issue":"3","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"23237d76-789e-4229-bef7-b6c83748d0d6","keyword":"钛及钛合金","originalKeyword":"钛及钛合金"},{"id":"b2d06cd8-6f9b-4ec1-81f9-788b631fcfcf","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"bc1c7acf-0d4d-418b-9e06-da93a2eee7f8","keyword":"激光熔覆","originalKeyword":"激光熔覆"},{"id":"a145a981-9f2f-48e4-b240-73b66af844cb","keyword":"表面沉积涂层","originalKeyword":"表面沉积涂层"},{"id":"a578ae8d-79c1-450a-850b-cf7c320cdad6","keyword":"热扩散","originalKeyword":"热扩散"},{"id":"4b20e303-3ddb-4192-b816-b3d9360e3c88","keyword":"表面纳米化处理","originalKeyword":"表面纳米化处理"},{"id":"3a00f838-6cf3-4856-88e2-7ef291c41626","keyword":"多组元和多层涂层","originalKeyword":"多组元和多层涂层"}],"language":"zh","publisherId":"shjs200503011","title":"钛及钛合金的表面处理技术新进展","volume":"27","year":"2005"},{"abstractinfo":"为了提高热作模具钢H13的性能,延长模具的使用寿命,对表面纳米化后的热作模具钢H13,在远低于传统渗硼温度的600℃下实施等离子低温渗硼试验.结果表明:表面纳米化后的H13钢在600℃和4~8h的渗硼处理后,表面确实形成了6~10μm厚度的渗硼层,且具有约为16GPa的极高硬度;4~8h的不同渗硼时间,对渗硼层厚度,成分含量及形貌结构变化有影响,实验证明了表面纳米化处理对低温渗硼层的形成起到必要和良好的促进作用.","authors":[{"authorName":"王庆芳","id":"c1001489-4daa-403d-af1a-bad94f913ecc","originalAuthorName":"王庆芳"},{"authorName":"吴晓春","id":"7bd39b78-3fde-4898-be03-c437b0783c1d","originalAuthorName":"吴晓春"}],"doi":"10.3969/j.issn.1001-7208.2009.02.002","fpage":"7","id":"9eeead15-0bdf-48f5-8236-b195b4e633d4","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"d1f0fcbf-c9fd-4e1e-8c61-d450466a4e16","keyword":"H13钢","originalKeyword":"H13钢"},{"id":"32b93c89-f8ac-4373-8b8c-80c7b2c0466c","keyword":"表面纳米化处理","originalKeyword":"表面纳米化处理"},{"id":"5303211e-e857-4475-ad21-0b92923aafed","keyword":"等离子低温渗硼","originalKeyword":"等离子低温渗硼"}],"language":"zh","publisherId":"shjs200902002","title":"H13钢等离子低温渗硼的研究","volume":"31","year":"2009"},{"abstractinfo":"采用表面机械研磨技术在低碳钢上制备出纳米结构表层,利用X射线衍射和电子显微分析研究表层的结构特征,并对硬度沿厚度方向的变化进行分析.结果表明:经过表面机械研磨处理后,样品表层的晶粒可细化至纳米量级.表面纳米晶层的厚度约为40μm,平均晶粒尺寸由10nm逐渐增加到100nm;在距表面约40-80μm的深度为亚微晶层,平均晶粒尺寸进一步增至1000nm.与样品的心部相比,表层的硬度显著提高.","authors":[{"authorName":"雍兴平","id":"2d5ee905-8dfa-4978-9b5a-326c341c5656","originalAuthorName":"雍兴平"},{"authorName":"刘刚","id":"65ffe15a-f65c-4348-89f2-7ce3fb2f1ad1","originalAuthorName":"刘刚"},{"authorName":"吕坚","id":"e3fe0b57-d8ef-4806-b40c-a1d7fc08cfbd","originalAuthorName":"吕坚"},{"authorName":"卢柯","id":"7f2eb9c1-2f47-49a6-a168-cf2ba76f4d78","originalAuthorName":"卢柯"}],"doi":"10.3321/j.issn:0412-1961.2002.02.011","fpage":"157","id":"fc2e62e8-894b-4037-85f1-ccb10c2d40f3","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a212e8da-18bf-4e13-a040-77bf5d64a29a","keyword":"低碳钢","originalKeyword":"低碳钢"},{"id":"590dc4bf-7a33-4d55-871f-258b5d578e45","keyword":"表面机械研磨","originalKeyword":"表面机械研磨"},{"id":"de20167f-fa7f-4f03-b22b-909a177648d5","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"7a329142-ff60-4dda-a345-5c031412895a","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"9fb49d49-b28a-4b78-8b8f-2064bed17768","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsxb200202011","title":"低碳钢表面纳米化处理及结构特征","volume":"38","year":"2002"},{"abstractinfo":"采用高频感应线圈加热,以蒸发-冷凝法制备了纳米Zn粉,粉末平均粒径30nm.借助X射线衍射、X射线光电子能谱和差热失重分析等测试手段,研究了表面钝化处理对纳米Zn粉抗氧化热稳定性能的影响.研究结果表明,经过表面钝化处理的纳米Zn粉在低于熔点温度的条件下具有较好的抗氧化性能.","authors":[{"authorName":"夏辉","id":"52fc01b1-d535-41f1-9af3-c0b63d4af10f","originalAuthorName":"夏辉"},{"authorName":"谢长生","id":"bfea41a8-0b46-4a01-a0af-cf716b490226","originalAuthorName":"谢长生"},{"authorName":"胡军辉","id":"4b23086e-295a-4fdf-9c1b-b4edc99febbf","originalAuthorName":"胡军辉"}],"doi":"10.3969/j.issn.1009-6264.2000.03.004","fpage":"17","id":"56feb54e-3cb7-4e07-a5ad-0a8a782fe0b8","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"8fa62592-d12e-470a-b27c-b8deae9f9db1","keyword":"蒸发-冷凝法","originalKeyword":"蒸发-冷凝法"},{"id":"79234af1-cb5c-49bf-9ef3-38f55ec5a150","keyword":"纳米Zn粉","originalKeyword":"纳米Zn粉"},{"id":"67d4e5b7-7ada-4adf-bc8e-f02f1d8060ff","keyword":"钝化处理","originalKeyword":"钝化处理"},{"id":"58ea22f9-d1b4-4c72-bbd2-43f5d586ff7b","keyword":"抗氧化性","originalKeyword":"抗氧化性"}],"language":"zh","publisherId":"jsrclxb200003004","title":"表面钝化处理对纳米Zn粉抗氧化性能的影响","volume":"21","year":"2000"},{"abstractinfo":"Fe73.5 Cu1 Nb3 Si13.5 B9纳米晶带材具有优异的软磁性能,在开关电源等领域得到广泛的应用,但Fe73.5 Cu1 Nb3 Si13.5 B9纳米晶带材磁芯在封装过程中存在着环氧树脂严重的不浸润问题,限制了纳米晶带材的应用。通过氧化处理法在带材表面制备了分布均匀、表面光洁、黑棕红色 Fe3 O4和 Fe2 O3氧化膜,氧化膜与带材结合力强,可以作为带材基体与环氧树脂的过渡层,改善了环氧树脂与带材的浸润性。相对于未表面氧化处理的带材,经过表面氧化处理带材的初始磁导率、饱和磁感应强度分别提高了14.6%和4.3%,矫顽力降低了21.6%。","authors":[{"authorName":"卢慧芳","id":"971d8f0f-247e-4ed6-9ced-8792e6a8580f","originalAuthorName":"卢慧芳"},{"authorName":"朱正吼","id":"2f2dda15-8f80-4645-b2ed-031db3b3cdd0","originalAuthorName":"朱正吼"},{"authorName":"徐雪娇","id":"e958b6bc-676a-4f50-84b5-0b1c138c3666","originalAuthorName":"徐雪娇"}],"doi":"10.3969/j.issn.1001-9731.2014.06.008","fpage":"6036","id":"8f89b989-a719-40f1-a601-0360d332faca","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"24615759-0d2e-4762-ae69-34f9f959c538","keyword":"非晶纳米晶","originalKeyword":"非晶纳米晶"},{"id":"d11cc081-350f-48c9-9d4f-9bc821bf89ee","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"3fd8c84b-ecce-4996-886f-47c42a3ea6d0","keyword":"表面氧化","originalKeyword":"表面氧化"},{"id":"ae9667fa-8955-4304-8997-3c112f6b3368","keyword":"软磁性能","originalKeyword":"软磁性能"}],"language":"zh","publisherId":"gncl201406008","title":"铁基纳米晶带材的表面氧化处理及其软磁性能","volume":"","year":"2014"},{"abstractinfo":"采用高能表面处理技术在40Cr钢的表面制备出具有纳米晶体特征的表面层.用扫描电子显微镜和透射电子显微镜研究了表面纳米层的微观结构,并利用纳米压入法测定了表面纳米层的硬度.结果表明,经过高能表面处理后,样品表面层的晶粒细化为纳米晶,平均晶粒尺寸约为11 nm,表面纳米层的硬度明显提高.","authors":[{"authorName":"赵新奇","id":"2517777c-882b-4d55-b549-63bd7005d1c1","originalAuthorName":"赵新奇"},{"authorName":"刘志文","id":"6c363c85-7a9a-4bf6-80a2-7c1bb7c80a21","originalAuthorName":"刘志文"},{"authorName":"张俊宝","id":"5b3be751-7f07-4ada-ade8-e0cec83b4f9b","originalAuthorName":"张俊宝"},{"authorName":"吴杰","id":"158e69fd-d10b-46d5-ab98-cbbb34dddedc","originalAuthorName":"吴杰"},{"authorName":"徐政","id":"cccfc2bd-291f-4018-a7af-b3fa2dbe4149","originalAuthorName":"徐政"},{"authorName":"熊天英","id":"10602680-eaf4-4313-8039-b6e656ae8a8b","originalAuthorName":"熊天英"},{"authorName":"宋洪伟","id":"41052071-048c-4088-ac69-a2b050482d41","originalAuthorName":"宋洪伟"}],"doi":"","fpage":"44","id":"129f45e4-221e-4525-9f33-584a23bdca3d","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cbd2ad74-66d7-46df-ae7b-5556a706ca50","keyword":"中碳钢","originalKeyword":"中碳钢"},{"id":"f199a180-8cb9-4d98-86b8-1ab29b741152","keyword":"表面纳米晶化","originalKeyword":"表面纳米晶化"},{"id":"695988c3-2816-4827-86d0-073038392273","keyword":"高能表面处理","originalKeyword":"高能表面处理"},{"id":"bd863124-97e5-49e3-a7ac-cb314b291526","keyword":"组织","originalKeyword":"组织"},{"id":"c05318d7-6d64-4bd3-8212-91d98cfd3a9c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gtyjxb200601011","title":"表面纳米晶化处理中碳钢的组织与力学性能","volume":"18","year":"2006"},{"abstractinfo":"从羧基定量化出发,采用红外光谱法、热重分析法和X-射线光电子能谱法详尽研究了氧化处理方法与多壁碳纳米管(MWCNTs)上引入羧基量的关系.结果表明,硝酸氧化法、混酸氧化法和混酸与过氧化氢共同氧化法均可以使MWCNTs表面产生羧基.热重分析法和XPS分析法可以定量分析MWCNTs表面羧基的含量,并且分析结果相近.XPS分析表明,2.5 mol/L硝酸氧化48 h可以使MWCNTs表面产生摩尔分数为4.80%的-COOH,而混酸(浓HNO3与浓H2SO4体积比为1:3)氧化4h可产生摩尔分数为5.35%的-COOH,如果进一步由质量分数20%的过氧化氢氧化2 h,MWCNTs表面产生的-COOH摩尔分数提高到7.55%.","authors":[{"authorName":"邱军","id":"aeb62c6d-b208-4e42-b8dc-9e4d29b45b54","originalAuthorName":"邱军"},{"authorName":"王国建","id":"07c52264-9157-4b3d-a9c7-46c6a8679056","originalAuthorName":"王国建"},{"authorName":"屈泽华","id":"8342247b-eb00-4c02-8a1f-68050ed6b79d","originalAuthorName":"屈泽华"},{"authorName":"苌璐","id":"9897568b-f07c-4014-a5ac-dd0f40576c6b","originalAuthorName":"苌璐"}],"doi":"10.3969/j.issn.1007-8827.2006.03.014","fpage":"269","id":"63c5af9f-cfc4-425c-9622-0319cec37cdb","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"f087bea5-a41d-4854-bbb4-c45f2500ab7b","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"13bd378c-83b1-47ad-bd20-487a73a0ddb7","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"bbdb3f2d-c3ac-48da-ba92-9dd71902891b","keyword":"羧基化","originalKeyword":"羧基化"},{"id":"51c4a401-e15a-4622-880f-70d35aadbcb9","keyword":"氧化处理","originalKeyword":"氧化处理"}],"language":"zh","publisherId":"xxtcl200603014","title":"氧化处理方法与多壁碳纳米管表面羧基含量的关系","volume":"21","year":"2006"},{"abstractinfo":"采用高能喷丸技术在1420铝合金上制备出纳米晶结构表层,利用X射线衍射仪、透射电子显微镜及高分辨电子显微镜研究由表层沿厚度方向的结构变化特征,并对硬度沿厚度方向的变化进行分析.结果表明:经过表面高能喷丸处理,样品表面形成了厚度约为20μm的纳米晶层,平均晶粒尺寸由约20 nm逐渐增加到约100nm;距表层约20~50 μm为亚微细晶层;表面纳米化的程度与塑性变形量有关;表面纳米化是通过位错滑移的塑性变形方式实现的;与样品的内部相比,表面硬度显著提高.","authors":[{"authorName":"胡兰青","id":"d6175e9e-88ba-4d5c-ac1f-11ec085218d1","originalAuthorName":"胡兰青"},{"authorName":"李茂林","id":"08004a57-e9e4-4233-931b-01a3d1219671","originalAuthorName":"李茂林"},{"authorName":"王科","id":"cb1e03a9-2931-4f69-a22c-62eedbb72335","originalAuthorName":"王科"},{"authorName":"刘刚","id":"19acce17-ed2c-47c7-845d-3c5e13e5b8b6","originalAuthorName":"刘刚"},{"authorName":"卫英慧","id":"7b25ceb5-10da-492c-b5e1-651180da0dc8","originalAuthorName":"卫英慧"},{"authorName":"许并社","id":"8f664b12-d430-4ce0-a1a7-808693dd842d","originalAuthorName":"许并社"}],"doi":"","fpage":"2016","id":"95874353-0706-45bf-9d94-20958d5d2049","issue":"12","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"9eb7b85d-5ed1-4462-8c35-a2dc92503e55","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"4c325d7a-cb2b-49bc-ba3a-640ac166230f","keyword":"高能喷丸","originalKeyword":"高能喷丸"},{"id":"a89e9eee-71f3-46fb-b578-885e2e15ee52","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"709afc68-0dc5-407e-94ec-a5ee4f285e18","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"c2aeeb0e-b96f-43e5-baa2-9bb0875bfaf4","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"zgysjsxb200412007","title":"铝合金表面纳米化处理及显微结构特征","volume":"14","year":"2004"},{"abstractinfo":"铝镁及其合金具有较高的比强度和比刚度,还有优良的塑性及拉伸性能.在对铝镁合金表面进行喷丸处理后,位于表面的粗晶组织被击碎,在表层出现一定厚度的纳米晶,这必将大大提高铝镁及其合金的力学性能.本文所要探讨的就是对铝镁材料表面纳米化后,其综合性能将有哪些改善.","authors":[{"authorName":"郭卫凡","id":"035845b1-f807-4eb0-b18b-57a724627d38","originalAuthorName":"郭卫凡"}],"doi":"","fpage":"55","id":"e32399d8-ae63-4ed7-9cd8-383eda92edf5","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"39a5f729-ba09-48cd-a0fe-08d8ea8a764d","keyword":"铝镁合金","originalKeyword":"铝镁合金"},{"id":"7e399cd4-6955-4489-9f07-27b6b7865411","keyword":"纳米技术","originalKeyword":"纳米技术"},{"id":"c41f7f79-6561-4fb4-90a0-15438a0353c6","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsgncl200906013","title":"表面纳米化处理对铝、镁合金性能的影响","volume":"16","year":"2009"},{"abstractinfo":"采用超声喷丸(USSP)技术对Cr5Mo钢表面进行纳米化处理,研究了试验钢表面的组织及显微硬度,并对超声喷丸前后试样在含H2S流动去离子水溶液中的流动加速腐蚀性能进行了研究,并对腐蚀产物膜的微观形貌进行了观察.结果表明:经USSP处理后,试样表面形成了一定深度的纳米晶层,该晶层内的平均晶粒尺寸约为20 nm;表面纳米化能够明显提高试样表层的显微硬度,并且处理时间越长,显微硬度越大,变形层厚度越大;与原始粗晶试样相比,表面纳米化试样的抗流动加速腐蚀性能增强,表面生成的腐蚀产物膜较致密;随着USSP处理时间的延长,腐蚀产物膜的致密度和完整性变差,耐蚀性能逐渐下降.","authors":[{"authorName":"陆晓峰","id":"ba11a6f1-4478-4ee7-b7a6-f3be03bf0ff8","originalAuthorName":"陆晓峰"},{"authorName":"廖明刚","id":"7cd65095-2e4e-442d-b47c-cbe25db28e29","originalAuthorName":"廖明刚"},{"authorName":"朱晓磊","id":"680f4202-c5ae-46d1-a1fc-7f9949f6c172","originalAuthorName":"朱晓磊"},{"authorName":"业成","id":"cf209523-612d-464e-8726-c2f418ceba3e","originalAuthorName":"业成"}],"doi":"","fpage":"66","id":"d6a635f0-d078-4b15-8ba4-a45716b00efa","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e0386540-6113-4d22-996e-244f83594b2d","keyword":"超声喷丸","originalKeyword":"超声喷丸"},{"id":"d9c6b91b-6991-4229-8116-9d45412b55e8","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"7a268139-a400-4232-b809-9ec85a21c030","keyword":"Cr5Mo钢","originalKeyword":"Cr5Mo钢"},{"id":"3ec3a8ed-9116-46c9-8565-a8f3627878fb","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"1cc3f9be-f674-46cc-b3d6-f6442b59f6f3","keyword":"流动加速腐蚀","originalKeyword":"流动加速腐蚀"}],"language":"zh","publisherId":"jxgccl201405014","title":"表面纳米化处理对Cr5Mo钢流动加速腐蚀性能的影响","volume":"38","year":"2014"}],"totalpage":7916,"totalrecord":79158}