本文采用直流磁控溅射技术在玻璃衬底上制备了AZO/Cu、Cu/AZO和AZO/Cu/AZO三种复合结构多层膜,研究了生长温度对多层膜特性的影响,发现AZO/Cu双层薄膜具有最优的光电性能,其最佳生长温度为100~150℃。文中进一步考察了生长温度对AZO/Cu双层薄膜结构性能和表面形貌的影响,结果表明:合适的生长温度有利于改善AZO/Cu双层薄膜的晶体质量,进而提高其光电性能;150℃下沉积的薄膜具有最佳品质因子1.11×10^-2Ω^-1,此时方块电阻为8.99Ω/sq,可见光透过率为80%,近红外反射率约70%。本文在较低温度下制备的AZO/Cu双层膜具有较优的透明导电性和良好的近红外反射性,可以广泛应用于镀膜玻璃、太阳能电池、平板显示器等光电领域。
AZO/Cu bi-layer, Cu/AZO bi-layer, and AZO/Cu/AZO tri-layer films were prepared on glass substrates by DC magnetron sputtering at different temperatures. The comparative study of electrical and optical properties revealed that AZO/Cu hi-layer films possessed superior photoelectric properties among the three multilayer films, with optimized growth temperatures in the 100-150℃ range. Effects of growth temperature on the structural property and surface morphology of AZO/Cu bi-layer films were further investigated. Moderate growth temperatures could lead to high crystal quality of the films, and therefore improve the photoelectric properties. AZO/Cu bi-layer films grown at 150℃ had the highest figure of merit of 1.11×10^-2Ω^-1, with a low sheet resistance of 8.99 Ω/sq, high visible transmittance of 80%, and near infrared reflectance of about 70%. The combination of good transparent-conductive property, excellent nearinfrared reflectivity, and low-temperature deposition enables the AZO/Cu bi-layer films to be widely used in various fields such as coated glasses, solar cells, and flat panel displays.
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了提高抗震钢筋HRB500E的强度与屈强比,保证其抗震性能,针对攀成钢棒、线材机组生产实际条件,采用不同微合金化方式,不同轧后冷却工艺,进行了HRB500E高强抗震钢筋生产实践.高线机组生产(O)6~12 mm规格钢筋时,采用钒氮微合金化,添加0.08%~0.11%的V,V/N接近4∶1,轧后斯太尔摩风冷工艺;棒材机组生产(O) 14~40 mm钢筋时,采用钒氮+钼复合微合金化,添加0.06% ~ 0.12%的V,V/N接近4∶1,0.03%~0.05%的Mo,轧后自然冷却.结果表明:生产的HRB500E获得了高的强度和良好的抗震性能,相关指标满足国家标准和用户的要求.","authors":[{"authorName":"王洪利","id":"a83637a2-d61f-4d00-a0de-630c0a70c431","originalAuthorName":"王洪利"},{"authorName":"李义长","id":"f9899ef6-49b0-4217-a241-05e91422bce4","originalAuthorName":"李义长"},{"authorName":"赵如龙","id":"722e48cd-82e3-471f-87f4-fb6c71661c95","originalAuthorName":"赵如龙"},{"authorName":"樊毅","id":"c1cd9235-5372-46c8-a566-2cd309185a98","originalAuthorName":"樊毅"},{"authorName":"李荣华","id":"1ebcce8e-7244-4f7c-a375-e54206732d6e","originalAuthorName":"李荣华"}],"doi":"10.7513/j.issn.1004-7638.2014.01.012","fpage":"59","id":"f5089cd4-a363-4537-a781-d84feb2d4e7b","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"36c9d0c7-da71-4ca3-aa2f-299ede9edbd6","keyword":"抗震钢筋","originalKeyword":"抗震钢筋"},{"id":"03c7630e-42ad-4909-94ca-a70148174a71","keyword":"HRB500E","originalKeyword":"HRB500E"},{"id":"8bd54d7e-7ce3-424a-ae9f-77c9f4f2e932","keyword":"复合微合金化","originalKeyword":"复合微合金化"},{"id":"8a092c1b-4304-4a87-8502-9232e8c946b3","keyword":"VN","originalKeyword":"VN"},{"id":"60d9cb9b-5622-4ed6-8426-2d5ec70e3fac","keyword":"VN+Mo","originalKeyword":"VN+Mo"},{"id":"9fef7809-4394-4075-a1f5-99fcd2f5584e","keyword":"强度","originalKeyword":"强度"},{"id":"d4a51c4b-da84-4b98-88bd-dca73b8bf382","keyword":"强屈比","originalKeyword":"强屈比"}],"language":"zh","publisherId":"gtft201401012","title":"VN及VN+Mo复合微合金化HRB500E高强抗震钢筋生产实践","volume":"35","year":"2014"},{"abstractinfo":"根据微合金纳米第二相在加热升温过程中的析出特点,充分发挥微合金第二相的强化作用,提出了遇火强化型耐火钢技术新思路。与传统耐火钢相比,通过降低钼含量,可以降低钢材成本。遇火强化型耐火钢的生产工艺路径为热轧+快速冷却,抑制微合金纳米第二相在热轧板冷却过程中析出的同时,获得中低温转变组织。工业试制Nb-V-Ti-Mo复合微合金化遇火强化型耐火钢Q420FRE组织类型为细小的粒状贝氏体,力学性能满足耐火钢标准GB/T 28415-2012的要求,其中室温伸长率和-40℃低温冲击韧性优异。经计算,工业试制的遇火强化型耐火钢Q420FRE在600~700℃下的纳米MC相沉淀强化增量超过50 MPa。模拟测试表明,工业试制Q420FRE的耐火极限温度接近650℃,600℃高温回火3 h不失效,空冷至室温后屈服强度上升,具有二次耐火性。","authors":[{"authorName":"吴年春","id":"dde079b8-a70f-48a2-addb-47deeef15646","originalAuthorName":"吴年春"}],"doi":"10.13228/j.boyuan.issn0449-749x.20140229","fpage":"82","id":"6f63c4c6-dffa-45cc-b014-4d05fa6c02ef","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6f19afdd-dfe7-40b7-a5ba-238b812678f5","keyword":"耐火钢","originalKeyword":"耐火钢"},{"id":"7d07c6a7-f986-4402-a9ed-059a5dd072c8","keyword":"复合微合金化","originalKeyword":"复合微合金化"},{"id":"7289e33b-4f36-46aa-a4c6-79b18777357f","keyword":"沉淀强化","originalKeyword":"沉淀强化"},{"id":"d15f159e-be7e-4d3e-81c3-967d9f9816bc","keyword":"粒状贝氏体","originalKeyword":"粒状贝氏体"},{"id":"b8960c89-c6e3-4c1a-aacf-d1aee6ff3672","keyword":"高温力学性能","originalKeyword":"高温力学性能"}],"language":"zh","publisherId":"gt201410016","title":"遇火强化型耐火钢Q420FRE的物理冶金原理与力学性能","volume":"","year":"2014"},{"abstractinfo":"研究了V、Ti在预应力钢绞线及钢丝用高碳钢线材中的应用.高碳钢盘条中加入微量的V、Ti,在降低了珠光体相变温度的同时使珠光体相变与贝氏体相变温度区间发生分离;V的加入可以在细化珠光体片层间距的同时,抑制晶界连续渗碳体的形成.V、Ti在高碳钢中主要以复合碳氮化物的形式在晶界铁素体及珠光体片层间弥散析出,同时有部分V以合金碳化物的形式存在于渗碳体片层中.高温区析出的Ti(C,N)对奥氏体晶粒的长大具有显著的抑制作用,V主要在低温区以碳氮化物的形式起到析出强化的作用,另有部分V原子与Cr类似,与渗碳体结合形成合金碳化物,起到了强化渗碳体的作用.","authors":[{"authorName":"麻晗","id":"0ff06560-9f3f-448a-b85e-3ff248954365","originalAuthorName":"麻晗"},{"authorName":"王雷","id":"7d1a7ef7-2aca-461b-8d60-c5902d09f08e","originalAuthorName":"王雷"}],"doi":"10.13228/j.boyuan.issn1001-0963.20140423","fpage":"69","id":"22c387c4-5ba4-406c-b166-20e6cc364fb9","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cb500d83-a1f9-4052-865f-6120910d178c","keyword":"复合微合金化","originalKeyword":"复合微合金化"},{"id":"7085c9e5-b595-4b8f-84dd-73be659c6e36","keyword":"相变","originalKeyword":"相变"},{"id":"485d77f9-fe36-49fe-9f97-49511fcaa23d","keyword":"析出强化","originalKeyword":"析出强化"},{"id":"debb8ffe-13e6-430d-a566-465b20495a12","keyword":"晶粒长大","originalKeyword":"晶粒长大"}],"language":"zh","publisherId":"gtyjxb201504013","title":"V和Ti在高碳钢中的应用","volume":"27","year":"2015"},{"abstractinfo":"研究了Sc和Ti复合微合金化对Al-Mg合金显微组织与拉伸性能的影响.结果表明:Sc和Ti复合微合金化可以显著提高Al-Mg合金的强度,并可细化铸态合金的晶粒组织.微量Sc和Ti的加入可使合金中形成大量细小弥散的球形Al3(Ti,Sc)粒子,这些Al3(Ti,Sc)粒子对位错和亚晶界具有强烈地钉扎作用,因而能强烈抑制合金的再结晶.Sc和Ti复合微合金化的Al-Mg合金的强化作用主要来源于Al3(Ti,Sc)粒子的析出强化和亚结构强化以及细晶强化.","authors":[],"doi":"","fpage":"419","id":"418c6970-9422-4a1d-b5cf-0bb415b07fe8","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"89d15812-5f3e-454d-b607-54e2f4658fdc","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"24d24c55-43e1-4f31-a6df-ca4997478d96","keyword":"Al-Mg-Ti-Sc合金","originalKeyword":"Al-Mg-Ti-Sc合金"},{"id":"1404d4d2-6f7e-4b95-880b-e886404c43c4","keyword":"Al3(Ti","originalKeyword":"Al3(Ti"},{"id":"91ec16da-52b3-4705-8dbc-31f6d1e10a7a","keyword":"Sc)粒子","originalKeyword":"Sc)粒子"},{"id":"2dc85a0d-1225-49a9-bc9c-443f23dba518","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"f6beec9d-3a3b-4469-a951-cfe0883f8b2f","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"e35d3645-6bba-47bf-a072-e60afe3114c0","keyword":"微合金化","originalKeyword":"微合金化"}],"language":"zh","publisherId":"clyjxb200504014","title":"复合微合金化对Al-Mg合金组织与性能的影响","volume":"19","year":"2005"},{"abstractinfo":"通过表面机械研磨处理(SMAT)在LY12CZ铝合金表面制备表面纳米化(SNC)过渡层,再采用微弧氧化(MAO)技术对纳米晶过渡层进行微结构重构,设计制备出纳米化-微弧氧化(SNC-MAO)复合涂层,并对比研究了表面纳米化、微弧氧化及纳米化-微弧氧化复合处理对基体铝合金拉伸性能的影响.结果表明,微弧氧化处理使基体铝合金的屈服强度和抗拉强度减小,而纳米化-微弧氧化复合处理则增加了基体铝合金的屈服强度和抗拉强度.在拉伸伸长率8%的条件下,相同厚度的纳米化-微弧氧化复合涂层比微弧氧化涂层具有更好的抗拉伸破坏能力,表现出更好的膜基结合性能.","authors":[{"authorName":"文磊","id":"61dca6ea-6059-4d6f-9e70-38e7e5c5ce8c","originalAuthorName":"文磊"},{"authorName":"王亚明","id":"024526ef-5407-4ddf-8d01-4692791d0a45","originalAuthorName":"王亚明"},{"authorName":"金莹","id":"4855a725-6f43-4c2d-9f43-a8b58c2ce8e1","originalAuthorName":"金莹"}],"doi":"10.11868/j.issn.1001-4381.2016.03.003","fpage":"15","id":"fff98e1e-72f8-4da1-8e04-dc551a74fc5b","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fbdd624d-30ee-43a1-8291-aeb6f6ac21f9","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"08d548b6-80bc-4601-92bf-e1b9e59874d4","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"7557ca03-101f-4425-8c78-09e8a53448c2","keyword":"表面机械研磨处理","originalKeyword":"表面机械研磨处理"},{"id":"3eade0e4-0d9a-40ed-a46f-20726bcba537","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"f2a4ee10-7f3f-4b5a-b493-3db6c4322ef7","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"clgc201603003","title":"表面纳米化-微弧氧化复合涂层对铝合金拉伸性能影响机制研究","volume":"44","year":"2016"},{"abstractinfo":"研究了微合金化和温度对钢/铝复合板结合强度的影响.通过光学显微镜和X射线衍射仪观察、检测了结合界面的微观结构,并进行剥离强度的测试.结果表明钢铝复合界面扩散反应生成的化合物为Fe2Al5,温度对复合板的界面结合强度影响极大,界面微合金化能显著提高钢/铝复合板界面性能.","authors":[{"authorName":"宋群玲","id":"fee42408-98d5-45fa-a6fa-6e877224379b","originalAuthorName":"宋群玲"},{"authorName":"孙勇","id":"b285348a-46f0-486f-a1c6-26255082926b","originalAuthorName":"孙勇"},{"authorName":"沈黎","id":"5d193e01-f892-476d-ba29-4a3199ee755a","originalAuthorName":"沈黎"}],"doi":"","fpage":"317","id":"8fd9a656-bf35-4f56-aa73-fb5f24ad29e2","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9e6b7704-d968-408f-b39f-6c2d7d86268a","keyword":"钢/铝复合板","originalKeyword":"钢/铝复合板"},{"id":"2d21ab3d-a123-45b5-a36e-9af44e20bbcc","keyword":"微合金化","originalKeyword":"微合金化"},{"id":"0e0ab2fe-b57c-4d41-96df-102f7a27eda3","keyword":"剥离强度","originalKeyword":"剥离强度"}],"language":"zh","publisherId":"cldb2004z1109","title":"界面微合金化对钢/铝复合板性能影响的研究","volume":"18","year":"2004"},{"abstractinfo":"通过Nb-V复合微合金化钢奥氏体连续冷却过程的热模拟试验,结合显微组织观察和显微硬度测试,综合分析了冷却速度对实验钢相变及组织的影响.结果表明,Nb-V复合微合金化低合金钢的临界淬火速度约为23℃/s;随着冷却速度的增大,相变开始温度和结束温度均有所下降,在低冷速区间会出现魏氏组织,在高冷速区间出现马氏体和贝氏体双相组织,晶粒明显细化.","authors":[{"authorName":"包俊成","id":"c870f1c5-192e-43a2-8fa7-2837a509415e","originalAuthorName":"包俊成"},{"authorName":"李鑫","id":"50530e6a-5516-4a7d-907a-56cf390423ee","originalAuthorName":"李鑫"},{"authorName":"赵捷","id":"79242560-79b1-4525-a52e-32f1a12f280f","originalAuthorName":"赵捷"},{"authorName":"宁保群","id":"8e21a5ee-ee77-4b9d-a826-c20a57b9d118","originalAuthorName":"宁保群"},{"authorName":"李建平","id":"dceec026-6d34-48ce-a7e5-553a8681d58b","originalAuthorName":"李建平"}],"doi":"","fpage":"101","id":"32e1413c-09dd-4927-a02c-33e5e13776de","issue":"z2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9f7fca20-0703-46b2-9211-1a9f601ab69d","keyword":"Nb-V微合金钢","originalKeyword":"Nb-V微合金钢"},{"id":"1687b434-a85d-4161-a95f-d9968a5bd014","keyword":"连续冷却速度","originalKeyword":"连续冷却速度"},{"id":"76c6250e-c1f7-4562-932f-906ef0d6a138","keyword":"静态CCT曲线","originalKeyword":"静态CCT曲线"},{"id":"3c772a33-2fa9-42c2-8779-9006c04d87d7","keyword":"组织转变","originalKeyword":"组织转变"}],"language":"zh","publisherId":"jsrclxb2012z2021","title":"Nb-V复合微合金化低合金钢连续冷却转变规律","volume":"33","year":"2012"},{"abstractinfo":"采用铸锭冶金法制备了Ti,Zr单独及复合微合金化的铝合金,采用OM、SEM、EDS及XRD等手段,研究并对比了Ti,Zr单独及复合添加时对合金晶粒的细化作用及在不同保温时间下对合金抗晶粒细化衰退性能的影响.结果表明,Ti,Zr复合添加时的晶粒细化效果比等量的Zr或Ti更加优异,且对合金晶粒细化衰退的抑制作用更加显著,当A1-0.15Zr-0.15Ti合金熔体的保温时间长达110 min时,合金仍保持着良好的晶粒细化作用.","authors":[{"authorName":"余爱武","id":"0ae5efa5-6fc8-40d3-b211-d25778624791","originalAuthorName":"余爱武"},{"authorName":"杨成刚","id":"489dee8d-2e8d-4968-acf1-92d647589b11","originalAuthorName":"杨成刚"},{"authorName":"何鹏","id":"e672b3d7-9876-4109-87c3-1320cb363d12","originalAuthorName":"何鹏"},{"authorName":"陈和","id":"fad958d2-644c-4936-b3da-a6acece660c4","originalAuthorName":"陈和"},{"authorName":"黄忠宝","id":"4064d71b-1d28-4fb7-8e2f-b42a89fa7a00","originalAuthorName":"黄忠宝"}],"doi":"","fpage":"1798","id":"c1c573de-9e59-4203-bfcc-cc583fe593a5","issue":"7","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"e6b69d63-0ab8-4ae8-8e0d-f3d6b211a04e","keyword":"微合金化","originalKeyword":"微合金化"},{"id":"bb0640e6-31cc-402e-8b43-cf5b191a11ef","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"63ee297d-2833-475c-a88b-4c1acb87347d","keyword":"保温时间","originalKeyword":"保温时间"},{"id":"a1a515f9-33c5-46a1-9ced-e13715d8b7ef","keyword":"抗细化衰退性能","originalKeyword":"抗细化衰退性能"}],"language":"zh","publisherId":"xyjsclygc201607031","title":"Ti、Zr复合微合金化对合金的抗晶粒细化衰退性能影响","volume":"45","year":"2016"},{"abstractinfo":"通过向工业纯铝中单独及复合添加微量的Ti,Zr元素,采用硬度测试、金相显微(OM)、扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)等分析方法,研究并对比了Ti,Zr单独及复合微合金化对铝合金再结晶的影响.结果表明:Ti,Zr复合微合金化不仅有效细化了合金的晶粒尺寸,提高了合金的力学性能,同时更加显著地提高了合金对再结晶的抑制作用.主要因为Ti,Zr复合微合金化的合金在均匀化退火及变形加热过程中,固溶在基体中的Ti,Zr原子会以大量且弥散的二次Al3Zr和Al3(Ti,Zr)粒子形式析出,这些Al3Zr和Al3(Ti,Zr)粒子的尺寸更加细小,弥散程度更高,高温下不易长大,且二次Al3(Ti,Zr)的热稳定性更高,与α(Al)共格性更好,在有效充当基体形核质点细化晶粒的同时,还能强烈的钉扎位错和亚晶界,有效抑制了合金的再结晶转变,并将Al-Ti-Zr合金的再结晶温度提高200℃以上,同时对合金的再结晶晶粒具有良好的细化作用.","authors":[{"authorName":"余爱武","id":"05dcfd10-aa0a-4ed6-b4b3-3adea4d94cf8","originalAuthorName":"余爱武"},{"authorName":"顾丹","id":"f9baef1e-99d8-448a-a4a5-c7e0b27165fa","originalAuthorName":"顾丹"},{"authorName":"宿国友","id":"bf0bae81-e277-44bd-94a8-11e922082e27","originalAuthorName":"宿国友"},{"authorName":"杨成刚","id":"b300284b-fa07-4f0d-a2f5-2391e5920597","originalAuthorName":"杨成刚"},{"authorName":"齐海雁","id":"5d73b1cb-fa62-4855-8ad2-536c0f069782","originalAuthorName":"齐海雁"}],"doi":"10.13373/j.cnki.cjrm.XY15060405","fpage":"1200","id":"353daccd-cc3c-447b-8abb-7f1e5d6c0211","issue":"12","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"8b35dc04-5f93-41cc-a425-7bd1ca1a97f5","keyword":"微合金化","originalKeyword":"微合金化"},{"id":"6eed0f65-20f3-4124-917e-8e1dbf578079","keyword":"再结晶","originalKeyword":"再结晶"},{"id":"1512ed2c-e110-4c41-8d81-79ed79d30eab","keyword":"Al3Zr","originalKeyword":"Al3Zr"},{"id":"422a110b-f618-4cd0-905e-eb1ea776b14a","keyword":"Al3(Ti,Zr)","originalKeyword":"Al3(Ti,Zr)"},{"id":"0df9fbb4-0d07-47e2-81c8-600c105d0af5","keyword":"细化作用","originalKeyword":"细化作用"}],"language":"zh","publisherId":"xyjs201612002","title":"Ti,Zr复合微合金化对铝合金再结晶的影响","volume":"40","year":"2016"},{"abstractinfo":"研究了微量Sc和Zr复合合金化对Al-Mg合金显微组织与拉伸性能的影响.结果表明:Sc和Zr复合微合金化可显著提高Al-Mg合金的强度.Al-Mg-Sc-Zr合金凝固过程中形成的初生Al3(Sc, Zr)复合粒子具有极强的晶粒细化作用,次生Al3(Sc, Zr)质点与Al-Mg-Sc合金中次生Al3Sc质点相比析出密度大大增加、分布更加均匀弥散、抑制再结晶的能力更为强烈.Sc和Zr复合微合金化大大促进了微量Sc在Al-Mg合金中的强化作用.由于Zr的价格比Sc便宜很多,采用Sc和Zr复合微合金化可减少铝合金中Sc的加入量,从而降低合金的成本.","authors":[{"authorName":"潘青林","id":"f7ed1f67-b71b-4b3b-becd-61302c876bf6","originalAuthorName":"潘青林"},{"authorName":"尹志民","id":"39d2353e-2907-49ec-be91-5622a98f3baf","originalAuthorName":"尹志民"},{"authorName":"张传福","id":"5af693fd-be52-4ab9-b716-4f3bad0b18ae","originalAuthorName":"张传福"}],"doi":"10.3969/j.issn.1005-5053.2002.01.002","fpage":"6","id":"58c241d3-78b0-4ca6-be12-9c0c732046c4","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"1acdb210-9dcc-47e0-9d92-8f31c8db30fc","keyword":"Al-Mg-Sc-Zr合金","originalKeyword":"Al-Mg-Sc-Zr合金"},{"id":"6c1e72f3-ed03-45ec-be7e-528c8a88723a","keyword":"Al3(Sc,Zr)","originalKeyword":"Al3(Sc,Zr)"},{"id":"5ea3d254-184d-4a0c-ad32-acb310685f2d","keyword":"Al3Sc","originalKeyword":"Al3Sc"},{"id":"0439200f-f2d0-4237-b06e-1df9a1ee4525","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"59949b68-c6bf-4d3e-9c79-0280605f110d","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"hkclxb200201002","title":"Sc和Zr复合微合金化在Al-Mg合金中的存在形式与作用","volume":"22","year":"2002"}],"totalpage":8975,"totalrecord":89747}