纳米通道内的反电渗析过程是一种将纳米通道两端由于浓度差造成的能量势差直接转化成电能的新方法.由于反电渗析中局部浓度随通道位置变化,壁面电荷密度也会随通道位置发生变化.本文引入双电层带电Basic-Stern模型,将壁面电荷密度与局部浓度关联,并在传统空间电荷模型的基础上,预测了反电渗析过程的电流电压曲线和电动势.修正的空间电荷模型由于引入双电层带电模型,将难以测量的物理量,如壁面电荷密度,转化为较易测得的物理量和已知的模型参数.与过去模型的对比表明修正的空间电荷模型在合理选择模型参数的条件下更符合实验结果.
参考文献
[1] | Dong-Kwon Kim;Chuanhua Duan;Yu-Feng Chen;Arun Majumdar .Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels[J].Microfluidics and nanofluidics,2010(6):215-1224-215-1224. |
[2] | Juwan Kim;Sung Jin Kim;Dong-Kwon Kim .Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores[J].Energy,2013(Mar.):413-421. |
[3] | Dong-Kwon Kim .Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels[J].Journal of Mechanical Science and Technology,2011(1):5-10. |
[4] | Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source[J].Advanced functional materials,2010(8):1339. |
[5] | Sven H.Behrens;David G.Grier .The charge of glass and silica surfaces[J].The Journal of Chemical Physics,2001(14):6716-6721. |
[6] | Wang, M.;Revil, A. .Electrochemical charge of silica surfaces at high ionic strength in narrow channels[J].Journal of Colloid and Interface Science,2010(1):381-386. |
[7] | Cheng LJ;Guo LJ .Rectified ion transport through concentration gradient in homogeneous silica nanochannels[J].Nano letters,2007(10):3165-3171. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%