欢迎登录材料期刊网

材料期刊网

高级检索

分别通过溶胶-凝胶法和高温固相反应法制备了BaCe0.5Zr0.4Y0.1O3-δ粉体.采用热重-差热分析(TG-DTA),粉末X射线衍射(XRD),扫描电子显微镜(SEM),傅立叶红外衍射(FT-IR),N2吸附-脱附等方法对所制备的粉体进行了表征.结果表明:用溶胶-凝胶法在1200 ℃×10 h可以合成纯的BaCe0.5Zr0.4Y0.1O3-δ粉体,合成温度比传统的高温固相反应法降低400 ℃左右;溶胶-凝胶法合成粉体具有多孔结构特征,与固相法合成粉体相比具有较高的比表面积.但致密化试验表明:溶胶-凝胶法合成粉体与固相法合成粉体相比具有较低的烧结活性.溶胶-凝胶法合成粉体颗粒表面残余的有机基团和颗粒内部的大量微孔将在致密化过程中产生空间位阻,从而影响高温下原子的迁移,阻碍材料的致密化过程.

参考文献

[1] Iwahara H;Shimura T;Matsumoto H .Protonic conduction in oxides at elevated temperatures and their possible application[J].ELECTROCHEMISTRY,2000,68(03):154.
[2] Schober T. .Applications of oxidic high-temperature proton conductors[J].Solid state ionics,2003(special issue si):277-281.
[3] Iwahara H;Esaka T;Uchida H;Maeda N .Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J].Solid-State Ionicis,1981,13(04):359.
[4] Iwahara H;Uchida H;Ono K;Ogaki K .Proton conduction in sintered oxides based on BaCeO3[J].Journal of the Electrochemical Society,1988,135(02):529.
[5] Iwahara H;Yajima T;Hibino K;Ozaki K Suzuki H .Protonic conduction in calcium,strontium and barium zirconates[J].Solid-State Ionicis,1993,61(1-3):65.
[6] Liang K C;Du Y;Nowick A S .Fast high-temperature proton transport in nonstoichiometric mixed perovskites[J].Solid-State Ionicis,1994,69(02):117.
[7] Iwahara H .Proton conducting ceramics and their applications[J].Solid State Ionics,1996,86-88:9.
[8] Ryu K H;Haile S M .Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions[J].Solid-State Ionicis,1999,125(1-4):355.
[9] Zuo C;Dorris S E;Balachandran U;Liu M L .Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-δ mixed protonic-electronic conductor[J].Chemistry of Materials,2006,18(19):4647.
[10] Azad K A;Irvine S T J .Synthesis,chemical stability and conductivity of the perovskites Ba(Ce,Zr)1-xScxO3-δ[J].Solid-State Ionicis,2007,178(1-10):635.
[11] 王吉德,宿新泰,刘瑞泉,胡云霞,谢亚红,岳凡.钙钛矿型高温质子导体研究进展[J].化学进展,2004(05):829-835.
[12] Phulé P P;Grundy C D .Pathways for thelowt emperature synthesis of nano-sized crystalline barium zirconate[J].Materials Science and Engineering B:Solid State Materials for Advanced Technology,1994,B23(01):29.
[13] Zhong ZM .Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems[J].Solid state ionics,2007(3/4):213-220.
[14] 冯骏,谷景华,张跃.质子导体SrCe0.9Y0.1O3-α的柠檬酸法合成研究[J].中国稀土学报,2006(05):633-635.
[15] Cervera B R;Oyama Y;Yamaguchi S .Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3-δ by sol-gel method[J].Solid-State Ionicis,2007,128(7-10):569.
[16] 贾定先,马桂林,石慧.BaCe0.8Y0.2O3-α的溶胶-凝胶法合成及其电性能[J].化学学报,2002(10):1737-1741.
[17] 刘瑞泉,宿新泰,王吉德,岳凡,谢亚红,胡云霞.BaCe0.9Nd0.1O3-δ柠檬酸盐法合成、表征及其在中温区的电导率[J].无机化学学报,2004(01):57-60.
[18] Chandler C;Roger C;Hampden-Smith M .Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors[J].Chemical Reviews,1993,93(03):1205.
[19] 范宝安,何灏彦,易冬亚.络合-燃烧法制备BaZr0.68 Ce0.17Y0.15O2.925质子导体[J].电源技术,2006(04):278-281.
[20] 汪洁,丁伟中,方建慧,朱冬冬,吴敏艳.BaCe0.5Zr0.4Y0.1O3-α的溶胶-凝胶法制备及其电性能[J].中国稀土学报,2005(04):449-454.
[21] Zhang J C;Wen Z Y;Huang S H;Wu J G,Han J D,Xu X X .High temperature proton conductor Sr(Ce0.6Zr0.4)0.9Y0.1O3-?:preparation,sintering and electrical properties[J].CERAMICS INTERNATIONAL,2008,34:1273.
[22] Chervin, CN;Clapsaddle, BJ;Chiu, HW;Gash, AE;Satcher, JH;Kauzlarich, SM .Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route[J].Chemistry of Materials,2005(13):3345-3351.
[23] Nyquist A R;Kagel O R.Infrared spectra of inorganic compounds (3800~45 cm-1)[M].New York:Academic Press,Inc,1971:10.
[24] Sin A.;Odier P. .Gelation by acrylamide, a quasi-universal medium for the synthesis of fine oxide powders for electroceramic applications[J].Advanced Materials,2000(9):649-652.
[25] Magrez A;Schober T .Preparation,sintering,and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3-δ:comparison between three different synthesis techniques[J].Solid-State Ionicis,2004,175(1-4):585.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%