欢迎登录材料期刊网

材料期刊网

高级检索

采用Weibull统计分布方法量化了剑麻纤维的横截面积,并考虑液体在剑麻纤维中空结构中的芯吸质量,发展了基于Wilhelmy吊片法原理测试剑麻纤维与液体动态接触角的表征方法。在此基础上,分析了不同表面处理方法对剑麻纤维微观结构、表面化学组成、表面能及其色散、极性特性的影响规律,并测试了剑麻纤维与E51环氧树脂的浸润性。结果表明:NaOH、阻燃剂处理使剑麻纤维表面极性官能团增加,纤维的表面能极性分量增加显著;硅烷处理增加了剑麻纤维表面的极性基团含量,但使其极性分量减小,表面能略有下降;并且剑麻纤维与E51树脂的浸润性与其极性比匹配特性密切相关。

The dynamic contact angle analytical method of sisal fiber based on Wihelmy plate principle was developed on the basis of the quantification of the cross-section area by using Weibull statistical distribution function and the measurment of liquid wicking quality caused by the hollow structure of sisal fiber.On this basis,the influences of different surface treatment methods on the surface microstructure,the surface chemical composition,the surface energy as well as its dispersion,polar component were analyzed.Also the wettability between sisal fiber and E51 epoxy resin was measured.The results show that the surface polar functional groups and polar component of surface energy of sisal fiber are significantly increased after being treated by NaOH and flame retardants.Although the surface polar functional groups are increased by silane treatment,the polar component decreased with the total surface energy slightly reduced.The wettability between sisal fiber and E51 resin is closely related to the matching characteristics of polar ratio of surface energies.

参考文献

[1] 王戈,陈复明,程海涛,等.含孔天然纤维织物复合材料力学性能[J].复合材料学报,2010,27(4):195-199.
[2] Bruce D M, Hobson R N, Farrent J W, et al. High- performance composites from low-cost plant primary cell walls[J]. Composites Part A, 2005, 36(11): 1486-1493.
[3] 孙占英,韩海山,戴干策.剑麻/聚丙烯复合材料的冲击性能及其预测[J].复合材料学报,2009,26(6):8-16.
[4] 卢殉,章明秋,容敏智,等.剑麻纤维增强聚合物基复合材料[J].复合材料学报,2002,19(5):1-6.
[5] 鲁博,张林文,曾竟成,等.天然纤维复合材料[M].北京:化学工业出版社,2005:58-59.
[6] 鲁小城,闫红强,王华清,等.阻燃苎麻/酚醛树脂复合材料的制备及性能[J].复合材料学报,2011,28(3):1-5.
[7] Sreekala M S, Thomas S. Effect of fibre surface modification on water sorption characteristics of oil palm fibres [J]. Composites Science and Technology, 2003, 63(6): 861- 869.
[8] 高路,王越平,王戈,等.几种天然植物纤维的鉴别方法[J].上海纺织科技,2009,37(9):7-9.
[9] LiGuanshi, Yin Yajun, Li Yan, et al. "Steiner trees" between cell walls of sisal[J]. Chinese Science Bulletin, 2009, 54(18): 3220-3224.
[10] Heng J Y Y, Duncan F P, Thielmann F, et al. Methods to determine surface energies of natural fibres: A review [J]. Composite Interfaces, 2007, 14(7-9):581-604.
[11] Alexis B J, Alexander B. Wetting behaviour, moisture up take and electrokinetic properties of lignocellulosic fibres [J].Cellulose, 2007, 14(2): 115-127.
[12] Rong Minzhi, Zhang Mingqiu, Liu Yuan, et al. Interfacial interaction in sisal/epoxy composites and its influence on impact performance [J]. Polymer Composites, 2002, 23(2): 182-192.
[13] Cantero G, Arbelaiz A, Liano-Ponte R, et al. Effects of fibre treatmeat on wettahility and mechanical behaviour of flax/ polypropylene composites [J]. Composites Science and Technology, 2003, 63(9): 1247-1254.
[14] Tran L Q N, Fuentes C A, Dupont-Gillain C, et al. Wetting analysis and surface characterisation of coir fibres used as reinforcement for composites[J]. Colloids and Surfaces A~ Physicochemical and Engineering Aspects, 2011, 377 ( 1 - 3 ): 251-260.
[15] Fuentes C A, Tran L Q N, Dupont-Gillain C, et al. Wetting behaviour and surface properties of technical bamboo fibres [ J ]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1-3): 89-99.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%