本文利用数值计算方法对采用均分网格的-维线性无源的对流-扩散方程在各种边界条件下的稳定性进行了分析,并求出了不同边界条件下一维问题的中心差分和QUICK格式的临界网格Peclet数.指出按现有方法得出的临界网格Peclet数是判别差分格式对流数值稳定性的最苛刻的要求.对中心差分和QUICK格式,除两点边值问题以外的其它边界条件下的稳定性范围均不小于或远远大于两点边值问题的稳定性范围.通过计算还得出了格式的数值稳定性主要取决于计算区域下游侧的边界条件类型而与计算区域上游侧的边界条件类型无关的结论.
参考文献
[1] | 陶文铨.数值传热学[M].西安:西安交通大学出版社,1988:220-231. |
[2] | Shyy W;Thakur S;Wright J .Second-Order Upwind and Central Difference for Recirculating Flow Computation[J].AIAA Journal,1992,30:923-932. |
[3] | Lilek Z;Muzaferija S;Peric M .Efficiency of Difference Schemes and Accuracy, Aspects for a Full-Multigrid SIMPLE Algorithm for Three-Dimensional Flows[J].Numerical Heat Transfer Part B,1997,31:23-42. |
[4] | Kong H;Choi H;Lee J S.Effects of Difference Schemas and Boundary Treatment on Accuracy of Solution of the Navier-stokes Equations[A].Tokyo,1997:845-850. |
[5] | Li Z Y;Hong T C;Tao W Q .Numerical Simulation of Heat Transfer at an Array of Co-planar Slot-like Surfaces Oriented Normal to a Forced Convection Flow[J].International Journal of Computer Applications in Technology,2000,13(06):285-294. |
[6] | 帕坦卡S V;张政.传热与流体流动的数值计算[M].北京:科学出版社,1989 |
[7] | Gresho P M;Lee R L .Don't Suppress the WigglesThey're Telling You Something[J].Computers and Fluids,1981,9:223-251. |
[8] | Leonard B P.A Survey of Finite Differences with Upwind for Numerical Modeling of the Incompressible Convection Diffusion Equation[A].Swansea:Prinerdge Press,1981:1-35. |
[9] | Tao W Q;Sparrow E W .The Transportive Property and Convective Numerical Stability of the Steady State Convection-Diffusion Finite Difference Equation[J].Numerical Heat Transfer,1987,11:491-497. |
[10] | 陶文铨;宇波;刘士来 等.对流项离散格式数值稳定性的讨论[J].哈尔滨工业大学学报,1999,31:15-18. |
[11] | 陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%