研究了铸造镍基高温合金K44在850---900℃, 225---380 MPa的高温拉伸蠕变行为.结果表明, 实验合金蠕变曲线具有较短的初始阶段和较长的加速阶段, 加速阶段较长是由于筏形化的r’粒子和位错相互作用促成的. 加速蠕变为应变软化阶段时, 可以由关系式来描述. 蠕变断裂数据遵守Monkman--Grant规律, 裂纹起源于晶界或枝晶界的空洞.
High temperature tensile creep behaviors of cast nickel—based superalloy K44 in the temperature range of 850---900℃ and under the applied stress range of 225---380 MPa have been studied. The results indicate that all of the creep curves of test alloys have similar shape: a short primary creep and a dominant accelerated creep stage, and the long accelerated stage is due to the interaction between rafting r’ particles and dislocations. As the creep strain is a softening stage, the accelerated creep can be approximately described by expression. The creep fracture data follow the Monkman--Grant relationship. Cracks originate from the cavities at grain boundary or interdendritic.
参考文献
[1] | |
[2] | |
[3] | |
[4] | |
[5] | |
[6] | |
[7] | |
[8] | |
[9] | |
[10] | |
[11] | |
[12] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%