欢迎登录材料期刊网

材料期刊网

高级检索

采用低温共溶在650~850℃内烧成制备(V-W-Ti-O)<,x>(Cu-Al-O)<,1-x>(Ce-O)<,0.03>,(x=0.9,0.8)双组分整体式低温脱硝催化剂.研究烧成温度对整体式催化剂的机械强度、开气孔率、吸水率及体积密度的影响,采用X射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDS)及傅里叶红外(FT-IR)等表征手段,分别考察催化剂的晶型、表面形貌和特征孔,定性、定量地分析催化剂的成分和官能团结构,进一步研究反应温度对脱硝催化活性的影响.结果表明,催化剂微观多孔、晶粒分散均匀,晶型复杂(包括TiO<,2>,TiVO<,4>,WV<,2>O<,6>,CeVO<,4>,Cu<,2>V<,2>O<,7>,AlV<,2>O<,4>,CuAlMnO<,4>和Cu<,1.9>V<,12>O<,29>等).700℃保温2h优化制备的(V-W-Ti-O)<,0.8>(Cu-Al-O)<,0.2>(Ce-O)<,0.03>催化剂,机械抗弯强度达到45.5 MPa,催化活性窗口为100~200℃,反应温度为150℃时,催化剂的脱硝活性达到75.9%.

The (V-W-Ti-O)<,x>(Cu-Al-O)<,1-x>(Ce-O)<,0.03>, (x=0.9, 0.8) deNO<,x> monolithic catalysts were prepared by low temperature co-sintering (LTC) within the sintering temperature range of 650-850 ℃. The effects of sintering temperature on the mechanical strength, porosity and water absorption of the monolithic catalysts and the effect of reaction temperature on catalytic activity were investigated. The microscopic structure of the catalysts was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier infrared spectroscopic analysis (FT-IR). Results show that catalysts are porous in micro-structure and grains are distributed uniformly. The crystallographic forms are mainly TiO<,2> (futile), TiVO<,4>, WV<,2>O<,6>, CeVO<,4>, Cu<,2>V<,2>O<,7>, AlV<,2>O<,4>, CuAlMnO<,4> and Cu<,1.9>V<,12>O<,29>. For the reforming monolithic catalysts sintered at 700 ℃ for 2 h, the two-component catalysts exhibit high catalytic activities in the low temperature range of 100-200 ℃ and their bending strength reaches to 45.5 MPa. The NO conversion of (V-W-Ti-O)<,0.8>(Cu-Al-O)<,0.2>(Ce-O)<,0.03> monolithic catalyst corresponds to 75.9% at reactor temperature of 150 ℃.

参考文献

[1] In-Young Lee;Dong-Wha Kim;Jung-Bin Lee;Kyong-Ok Yoo .A practical scale evaluation of sulfated V_2O_5/TiO_2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH_3[J].Chemical Engineering Journal,2002(3):267-272.
[2] Iwamoto M;Takanaka T;Matsukami K et al.[J].Applied Catalysis A:General,1985,16(02):153.
[3] Ohman LO.;Ganemi B.;Bjornbom E.;Rahkamaa K.;Keiski RL.;Paul J. .Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5[J].Materials Chemistry and Physics,2002(2/3):263-267.
[4] Chung S Y;Oh S H;Kim M H et al.[J].Catalysis Today,1999,54(04):521.
[5] Hadjiivanov K;Klissurski D;Ramis G et al.[J].Applied Catalysis B:Environmental,1996,7(3-4):251.
[6] Fatrauto R J;Hock R M .[J].Catalysis Today,2000,55(1-2):179.
[7] Liu Qingya;Liu Zhanyu;Fan Jian .[J].Chinese Journal of Catalysis,2005,26(01):59.
[8] Kohler K;Engweiler J;Balker A .[J].Journal of Molecular Catalysis A:Chemical,2000,162(1-2):423.
[9] Reiche M.A.;Hug;P.;Baiker A. .Effect of Grafting Sequence on the Behavior of Titania-Supported V_2O_5-WO_3 Catalysts in the selective Reduction of NO by NH_3[J].Journal of Catalysis,2000(2):400-411.
[10] Wang Ming;Su Li;Yu Shouming et al.[J].Journal of Molecular Catal (Chin),1992,6(02):136.
[11] Lu Wenzhi;Rao Weiwei;Xiao Wende et al.[J].Journal of Ningxia University(Natural Science Edition),2001,22(02):172.
[12] 徐光宪.Rare Earths(稀土)[M].北京:冶金工业出版社,1978:29.
[13] Jiang Pingping;Zhang Zhigang;Guo Yun et al.[J].Journal of the Chinese Rare Earth Society,2004,22(04):538.
[14] Zhu Shemin;Shen Yuesong;Li Weifeng et al.[J].Journal of Rare Earths,2006,24(01):234.
[15] Zhu Shemin;Shen Yuesong;Wang Jialei .Preparation and Perfoimance of Al2 TiO5-TiO2-SiO2 Honeycomb Ceramics by Doping Rare Earth[J].Journal of Rare Earths,2007(4):457-461.
[16] Sullivan DH.;Conner WC.;Harold MP. .Catalyst transformation during NO+NH3 reaction over vanadium oxide using in situ FTIR emission spectroscopy[J].Journal of Catalysis,1998(1):108-118.
[17] 陆佩文.The Scientific Basics of Inorganic Materials(无机材料科学基础)[M].武汉:武汉科技大学出版社,1996:67.
[18] Qu Hongxia;Zhong Qin .[J].Journal of Nanjing University of Science and Technology,2002,26(01):68.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%