欢迎登录材料期刊网

材料期刊网

高级检索

大变形管线钢是一种管道在通过地质复杂地区(滑坡、地震、冻土等)时,为了降低地层移动对管道可能造成的变形损伤而开发出来的新型管道结构用材料.采用材料显微分析方法和力学性能测试等手段,对一种大变形X80管线钢在应变时效中的脆化规律进行了研究.结果表明,应变时效使试验钢产生脆化.随着应变时效温度的升高,强度和硬度增加,塑性和韧性下降.应变时效脆化形成的机制是管线钢间隙原子与位错的交互作用.与普通X80钢相比,大变形X80钢的应变时效倾向较小,这是因为双相组织中铁索体固溶的碳、氮原子少,位错密度低.

参考文献

[1] 高惠临.管线钢与管线钢管[M].北京:中国石化出版社,2012
[2] Zhao, W.;Chen, M.;Chen, S.;Qu, J..Static strain aging behavior of an X100 pipeline steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:418-422.
[3] Samek L;Moor E;Penning J et al.Static Strain Aging of Microstructural Constituents in Transformation-Induced-Plasticity Steel[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2008,39:2542.
[4] Noecker R;Nissley N;Ma N.Strain Aging of C-Mn Line Pipe Steels:An Analytical Approach to Compare Strain Aging Heat Treatments[A].New York:ASME,2011:463.
[5] 高建忠,王春芳,王长安,陈宏达,张鸿博,杨专钊.高钢级管线钢应变时效行为分析[J].材料开发与应用,2009(03):86-90.
[6] 吴海凤,郑磊.预应变量和时效温度对X80管线钢性能的影响[J].热加工工艺,2009(10):166-169.
[7] 牛冬梅,王茂堂,何莹,李桂芝,苏丽珍,白芳.大变形管线钢管应变时效硬化研究[J].焊管,2008(05):20-24.
[8] ZHANG X Y;GAO H L;JI L K et al.Influence of Strain Aging on the Microstructure-Property of an X100 Pipeline Steel[J].Materials Science Forum,2010,658:169.
[9] Dong H S;Jang Y Y;Woo H S.Development of X100Linepipe Steel With High Deformation Capacity[A].New York:ASME,2008:585.
[10] Ishikawa N;Okatsu M;Muraoka R.Material Develop ment and Strain Capacity of Grade X100 High Strain Linepipe Produced by Heat Treatment Online Process[A].New York:ASME,2008:713.
[11] Ishikawa N;Okatsu M;Endo S.Design Concept and Production of High Deformability Linepipe[A].New York:ASME,2006:215.
[12] DUAN D;ZHOU J;Rothwell B.Strain Aging Effects in High Strength Line Pipe Materials[A].New York:ASME,2008:317.
[13] Narayanan B;Brady N;WANG Y Y.Effect of Strain Ageing on Yield Strength and Post Yield Behavior of FCAWG Ferritic Weld Metal[A].New York:ASME,2010:569.
[14] Davies R G .Early Stages of Yielding and Strain Aging of a Vanadium-containing Dual-Phase Steel[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1979,10:1549.
[15] ZHAO M C;Hanamura T;QIU H et al.Difference in the Role of Non-Quench Aging on Mechanical Properties Between Acicular Ferrite and Ferrite-Pearlit Pipeline Steels[J].ISIJ International,2005,45(01):116.
[16] Panda A K;Ganguly R I;Misra S .Optimal Treatment Com bination for Maximum Response in the Strain Aging of a Dual-Phase Steel[J].J Heat Treating,1991,9:57.
[17] A. J. P. Gater;G. Fourlaris;S. G. R. Brown .Strain aging of titanium-vanadium ultralow carbon strip steels[J].Ironmaking & Steelmaking: Products and applications,2012(3):216-221.
[18] Nagai K;Shinohara Y;Tsuru E et al.Effect of Strain Path Change and Strain Aging on Anisotropic Work-Hardening Behavior in Ferritic Steel[J].Journal of the Iron and Steel Institute of Japan(in Japanese),2012,98(06):267.
[19] Ono Y;Okuda K;Funakawa Y et al.Effect of Ferrite Grain Boundary on Strain Aging Behavior in Nb-Bearing Ultra-LowCarbon Steel Sheets[J].Materials Science Forum,2011,706-709:2222.
[20] Korzekwa D A;Matlock D K;Krauss G .Dislocation Substructure as a Function of Strain in a Dual-Phase Steel[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15:1221.
[21] JUNFANG LU;OLADIPO OMOTOSO;J. BARRY WISKEL .Strengthening Mechanisms and Their Relative Contributions to the Yield Strength of Microalloyed Steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2012(9):3043-3061.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%