采用球磨方法制备了2LiBH4/MgH2复合储氢材料体系,用XRD、FTIR和储氢性能测试手段等对复合体系结构和储氢性能进行表征,研究了不同Ce基催化剂对复合体系放氢性能的影响,分析了催化剂的催化机理.结果表明:2LiBH4/MgH2复合物加热过程为明显的两步放氢,第1步主要发生MgH2的分解放氢;第2步为第1步生成的Mg与LiBH4发生放氢反应;添加Ce和CeF3都能提高2LiBH4/MgH2体系的放氢性能.Ce主要改善体系第2步放氢特性,CeF3 对体系两步放氢反应均产生显著效果.添加5 mol% CeF3使2LiBH4/MgH2体系起始放氢温度降低约100℃,体系最大放氢量达到10.6%(质量分数,下同);F-取代部分H形成LiBH1-xFx,改善了LiBH4的分解特性,从而显著改善了2LiBH4/MgH2体系的放氢性能.
参考文献
[1] | Louis Schlaphach;Andreas Züttel .[J].Nature,2001,414:353. |
[2] | Andreas Züttel;Rentsch S .[J].Journal of Alloys and Compounds,2003,356-357:515. |
[3] | Vajo JJ;Skeith SL;Mertens F .Reversible storage of hydrogen in destabilized LiBH4[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2005(9):3719-3722. |
[4] | Dhanesh Chandra;James J. Reilly;Raja Chellappa .Metal Hydrides for Vehicular Applications: The State of the Art[J].JOM,2006(2):26-32. |
[5] | Gennad F C;puszkiel J A et al.[J].Journal of Power Sources,2010,195:3266. |
[6] | Gennar F C;Esquivel M R et al.[J].Journal of Alloys and Compounds,2009,485:47. |
[7] | Senon Ah Jim;Young Su Lee et al.[J].Journal of Physical Chemistry C,2008,112:9520. |
[8] | Wang Pei-Jun;Fang Zhan-Zhan et al.[J].International Journal of Hydrogen Energy,2010,10:3072. |
[9] | Wang Peijun;Ma Laipeng et al.[J].Energy & Environmental Science,2009,2:20. |
[10] | Tessui N;Takayuki I et al.[J].Journal of Alloys and Compounds,2007,446-447:306. |
[11] | Ulrike B;Dorthe B .[J].Journal of Physical Chemistry C,2010,114:15212. |
[12] | Gosalawit-Utke R;von Colbe J M B et al.[J].Journal of Physical Chemistry C,2010,114:10921. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%