欢迎登录材料期刊网

材料期刊网

高级检索

采用球磨方法制备了2LiBH4/MgH2复合储氢材料体系,用XRD、FTIR和储氢性能测试手段等对复合体系结构和储氢性能进行表征,研究了不同Ce基催化剂对复合体系放氢性能的影响,分析了催化剂的催化机理.结果表明:2LiBH4/MgH2复合物加热过程为明显的两步放氢,第1步主要发生MgH2的分解放氢;第2步为第1步生成的Mg与LiBH4发生放氢反应;添加Ce和CeF3都能提高2LiBH4/MgH2体系的放氢性能.Ce主要改善体系第2步放氢特性,CeF3 对体系两步放氢反应均产生显著效果.添加5 mol% CeF3使2LiBH4/MgH2体系起始放氢温度降低约100℃,体系最大放氢量达到10.6%(质量分数,下同);F-取代部分H形成LiBH1-xFx,改善了LiBH4的分解特性,从而显著改善了2LiBH4/MgH2体系的放氢性能.

参考文献

[1] Louis Schlaphach;Andreas Züttel .[J].Nature,2001,414:353.
[2] Andreas Züttel;Rentsch S .[J].Journal of Alloys and Compounds,2003,356-357:515.
[3] Vajo JJ;Skeith SL;Mertens F .Reversible storage of hydrogen in destabilized LiBH4[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2005(9):3719-3722.
[4] Dhanesh Chandra;James J. Reilly;Raja Chellappa .Metal Hydrides for Vehicular Applications: The State of the Art[J].JOM,2006(2):26-32.
[5] Gennad F C;puszkiel J A et al.[J].Journal of Power Sources,2010,195:3266.
[6] Gennar F C;Esquivel M R et al.[J].Journal of Alloys and Compounds,2009,485:47.
[7] Senon Ah Jim;Young Su Lee et al.[J].Journal of Physical Chemistry C,2008,112:9520.
[8] Wang Pei-Jun;Fang Zhan-Zhan et al.[J].International Journal of Hydrogen Energy,2010,10:3072.
[9] Wang Peijun;Ma Laipeng et al.[J].Energy & Environmental Science,2009,2:20.
[10] Tessui N;Takayuki I et al.[J].Journal of Alloys and Compounds,2007,446-447:306.
[11] Ulrike B;Dorthe B .[J].Journal of Physical Chemistry C,2010,114:15212.
[12] Gosalawit-Utke R;von Colbe J M B et al.[J].Journal of Physical Chemistry C,2010,114:10921.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%