欢迎登录材料期刊网

材料期刊网

高级检索

推导出了金属纳米晶界的基本热力学函数,模拟计算了金属纳米晶界的吉布斯自由能随晶界过剩体积和温度的变化规律.以铜纳米晶材料为例,应用纳米晶热力学模型预测了纳米晶组织的热稳定性及纳米晶粒长大行为.将纳米晶界的热力学函数引入元胞自动机仿真算法,利用计算机模拟研究了金属纳米晶的变温晶粒长大过程.实验证实铜纳米晶粒长大的动力学特征符合纳米晶热力学模型的计算预测结果.

The fundamental thermodynamic functions of nanograin boundaries in nanocrystalline metal were derived. The Gibbs free energy as a function of the excess volume and the temperature of the nanograin boundary was simulated and calculated. Using nanocrystalline Cu as an example, the thermodynamic stability and the nanograin growth behavior of nanocrystalline microstructure were predicted by the nanocrystalline thermodynamic model. The thermodynamic functions of nanograin boundaries were introduced into the Cellular Automation algorithm, and the temperature-varying nanograin growth process of nanocrystalline Cu was simulated. The kinetics features of the nanograin growth of the nanocrystalline Cu confirm the predictions from the thermodynamic model.

参考文献

[1] Hadjisavvas G;Kelires PC .Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO2 nanocrystals[J].Physica, E. Low-dimensional systems & nanostructures,2007(1/2):99-105.
[2] Fecht J H .[J].Physical Review Letters,1990,65:610.
[3] Wagner M .[J].Physical Review B:Condensed Matter,1992,45:635.
[4] 宋晓艳,高金萍,张久兴.纳米多晶体的热力学函数及其在相变热力学中的应用[J].物理学报,2005(03):1313-1319.
[5] Xiaoyan Song;Jiuxing Zhang;Lingmei Li .Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals[J].Acta materialia,2006(20):5541-5550.
[6] 李凌梅,宋晓艳,张久兴,杨克勇.金属纳米晶的界面热力学及热稳定性研究[J].自然科学进展,2007(09):1316-1320.
[7] 宋晓艳,张久兴,杨克勇.金属纳米晶粉体材料中的不连续晶粒长大[J].中国有色金属学报,2005(11):1733-1737.
[8] Tjong SC;Chen H .Nanocrystalline materials and coatings[J].Materials Science & Engineering, R. Reports: A Review Journal,2004(1/2):1-88.
[9] Song Xiaoyan;Zhang Jiuxing;Yang Keyong .[J].Journal of Materials Research,2005,20:3054.
[10] 吴志方,曾美琴.纳米晶材料的晶粒长大[J].金属功能材料,2005(03):31-34.
[11] Raghavan S;Sahay S S .[J].Materials Science and Engineering A,2007,445-446(15):203.
[12] 麻晓飞;关小军;刘运腾 et al.[J].中国有色金属学报,2008,18(07):1305.
[13] Liu Z J;Shen Y G .[J].Acta Materialia,2004,52(03):729.
[14] Yoshihiro S;Yoshiyuki S;Hidehiro O .[J].Computational Materials Science,2007,40(01):40.
[15] SpechtE D;Rack P D;Rar A et al.[J].The Soild Films,2005,493:307.
[16] 梁海弋,王秀喜,吴恒安,王宇.纳米多晶铜微观结构的分子动力学模拟[J].物理学报,2002(10):2308-2314.
[17] Meng Q;Rong Y H;Xu Z Y .[J].Science in China(Series E),2002,45(05):485.
[18] Rose J H;Smith J R;Guinea F .[J].Physical Review B:Condensed Matter,1984,29:2963.
[19] Vinet P;Smith J R;Ferrante J et al.[J].Physical Review B:Condensed Matter,1987,35:1945.
[20] Dugdale J S;Macdonald D K C .[J].Physical Review,1985,89:832.
[21] Lu K .[J].Physical Review B:Condensed Matter,1995,51:18.
[22] Gerifalco L A;Weizer V G .[J].Physical Review,1959,114:687.
[23] 田莳.材料物理性能[M].Beijing:Beijing University of Aviation and Avigation Press,2001
[24] Mercedes T;Valentín G B;José E F R et al.[J].Journal of Physics and Chemistry of Solids,2002,63:1705.
[25] 韩清超,宋晓艳,李凌梅,刘雪梅,张久兴.基于热力学函数的纳米晶粒长大Cellular Automaton仿真研究[J].金属学报,2008(04):495-500.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%