欢迎登录材料期刊网

材料期刊网

高级检索

将微观尺度的强度预测模型与单胞尺度有限元模型相结合,建立了2.5维C/SiC复合材料的双尺度强度预测模型。该模型首先计算微观尺度的应力-应变曲线以及最终失效时的力学性能,然后将其带入单胞模型,对不同边界条件下单胞模型的弹性模量进行折减,统计单胞模型的平均应力与应变,最后得到单胞尺度的应力-应变关系和最终失效时的力学性能。通过2.5维C/SiC复合材料常温和高温条件下的经向单轴拉伸试验,得到了2.5维C/SiC复合材料经向拉伸过程的应力-应变曲线以及最终失效时的力学性能。结果表明,理论分析结果与实验值基本一致,验证了该方法的有效性。

A method to predict the strength of 2.5D C/SiC composite was developed,which combined the strength prediction method in micro-scale and FEM model in meso-scale.Strain-stress curve and mechanics properties at the failure point in meso-scale were gotten by calculating the strain-stress curve and mechanics properties at the failure point in micro-scale,diminishing the elastic modulus of elements,and calculating the average strain and stress with different boundary conditions.The tensile propriety was tested at normal and high temperature,meanwhile,the strain-stress curve and mechanics properties at failure point were gotten.The results show that the theoretical results can fit the experimental results well and the theoretical method is validity.

参考文献

[1] 李龙彪, 宋迎东, 孙志刚. 单向纤维增强陶瓷基复合材料单轴拉伸行为 [J]. 复合材料学报, 2008, 25(4): 154-160.
[2] 郑 君, 温卫东, 崔海涛, 等. 2.5维机织结构复合材料的几何模型 [J]. 复合材料学报, 2008, 25(2): 143-148.
[3] 赵 琳, 张博明. 基于单胞解析模型的单向复合材料强度预报方法 [J]. 复合材料学报, 2010, 27(5): 86-92.
[4] Curtin W A. Ultimate strengths of fibre-reinforced ceramics and metals [J]. Composites, 1993, 24(2): 98-102.
[5] Ahn B K, Curtin W A. Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites [J]. J Mech Phys Solids, 1997, 45(2): 177-209.
[6] Camus G, Laurent G, Stephane B. Development of damage in a 2D woven C/SiC composite under mechanical loading Ⅰ : Mechanical characterization [J]. Composites Science and Technology, 1996, 56: 1363-1372.
[7] Bouazzaoui R E, Baste S, Camus G. Development of damage in a 2D woven C/SiC composite under mechanical loading Ⅱ : Ultrasonic characterization [J]. Composites Science and Technology, 1997, 56(12): 1373-1382.
[8] Weigel N, Kr?plin B, Dinkler D. Micromechanical modeling of damage and failure mechanisms in C/C-SiC [J]. Computational Materials Science, 1999, 16(1-4): 120-132.
[9] Weigel N, Dinkler D, Kroplin B H. Micromechanically based continuum damage mechanics material laws for fiber-reinforced ceramics [J]. Comput Struct, 2001, 79: 2277-2286.
[10] Aubard X. Modelling of the mechanical behaviour of a 2-D SiC-SiC composite at meso-scale [J]. Composites Science and Technology, 1995, 54(4): 371-378.
[11] 张 超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测 [J]. 复合材料学报, 2011, 28(2): 222-230.
[12] Dong W F, Xiao J, Li Y. Finite element analysis of the tensile properties of 2.5D braided composites [J]. Materials Science and Engineering: A, 2007, 457(1/2): 199-204.
[13] Ma J, Xu Y, Zhang L, et al. Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration [J]. Scripta Materialia, 2006, 54: 1967-1971.
[14] 马军强, 徐永东, 张立同, 等. 化学气相渗透2.5维C/SiC复合材料的拉伸性能 [J]. 硅酸盐学报, 2006, 36(6): 728-732.
[15] 于新民, 周万城, 郑文景, 等. 2.5维碳化硅纤维增强碳化硅复合材料的力学性能 [J]. 硅酸盐学报, 2008, 36(11): 1559-1563.
[16] Chang Y, Jiao G, Wang B, et al. Elastic behavior analysis of 3D angle-interlock woven ceramic composites [J]. Acta Mechanica Solida Sinica, 2006, 19(2): 152-159.
[17] 陶永强, 矫桂琼, 王 波, 等. 2D 编织陶瓷基复合材料应力-应变行为: 分析预测 [J]. 工程力学, 2009, 26(10): 221-227.
[18] Zweben C, Rosen B W. A statistical theory of material strength with application to composite materials [J]. Journal of the Mechanics and Physics of Solids, 1970, 18(3): 189- 206.
[19] Curtin W A, Ahn B K, Takeda N. Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites [J]. Acta Materialia, 1998, 46(10): 3409-3420.
[20] Stawovy R H, Kampe S L, Curtin W A. Mechanical behavior of glass and blackglas ceramic matrix composites [J]. Acta Materialia, 1997, 45(12): 5317-5325.
[21] Kin L, Reifsnider K L. A tensile strength model for unidirectional fiber-reinforced brittle matrix composite [J]. International Journal of Fracture, 2000, 106: 97-115.
[22] Dalmaz A, Ducret D, Guerjouma R E, et al. Elastic moduli of a 2.5D Cf/SiC composite: Experimental and theoretical estimates [J]. Composites Science and Technology, 2000, 60: 913-925.
[23] Puglia P D, Sheikh M A, Hayhurst D R. Classification and quantification of initial porosity in a CMC laminate [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(2): 223-230.
[24] Morais de A B. Prediction of the longitudinal tensile strength of polymer matrix composites [J]. Composites Science and Technology, 2006, 66(15): 2990-2996.
[25] Puglia P D, Sheikh M A, Hayhurst D R. Classification and quantification of initial porosity in a CMC laminate [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(2):223-230.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%