欢迎登录材料期刊网

材料期刊网

高级检索

同步辐射穆斯堡尔谱自从1985年取得突破后,经历了20多年的长足发展,已经成为穆斯堡尔谱学的一个成熟的分支。目前同步辐射穆斯堡尔谱学由两个部分构成:基于相干核共振散射机制的时域穆斯堡尔谱学和基于非相干非弹性核共振散射机制的X射线谱学。第三代同步加速器的出现促进了时域穆斯堡尔谱学的发展,测量得到穆斯堡尔激发态寿命r期间衰变计数率-9时间的关系,观测到一些有趣的现象。同步辐射穆斯堡尔谱既能做常规透射谱学研究,测量各种超精细相互作用及f1M,8sod等穆斯堡尔参数,也能利用非弹性核共振散射测量固体的声子谱,并且也能测出fL-M和8sod及力常数等,时域谱和非相干谱的测量精度都高于常规穆斯堡尔谱。

The idea of using synchrotron radiation as a MOssbauer source experienced a breakthrough in 1985, followed by steady development for more than 20 years. Synchrotron M0ssbauer spectroscopy con- sists of two areas. The first one is the so called time domain MOssbauer spectroscopy based on coherent nuclear resonant scattering which permits determination of hyperfine interactions and other M6ssbauer pa- rameters such as fLM and 8soD. The other is incoherent nuclear resonant inelastic X-ray scattering, which provides vibration information of atoms in a solid, i. e. , the phonon density of states. All the experiments have better accuracy than that obtained in conventional M0ssbauer spectroscopy.

参考文献

[1] GERDAU E, RUFFER R, WINKLER H, et al. Phys Rev Lett, 1985, 54: 835.
[2] Seto M, Yoda Y, Kikuta S, etal. Phys Rev Lett, 1995, 74: 3828.
[3] CHEN Y L, YANG D P. Mossbauer Effect in Lattice Dyna- mics. Weinhein(Gemany): Wiley-VCH, 2007: 253-298.
[4] STURHAHN W. J Phys: Condens Matt, 2004, 16: S497.
[5] LYNCH F J, HOLLAND R E, HAMERMESH M. Phys Rev, 1960, 120: 513.
[6] HANNON J P, TRAMMELL G T. Hyperfine Interact, 1999, 123-124: 127.
[7] COUSSEMENT R, COTTENIER S, and Labbe C. Phys Rev B, 1996, 54: 16003.
[8] RUFFER R, RUTERS H D, GERDAU E, et al;. Hyperfine Interact, 1999, 123-124: 405.
[9] DEA.K L, BOTTY.A-N L, CALLENS R, etal. Hyperfine In- teract 2006, 167: 709.
[10] VAN BURCK U. Hyper{ine Interact, 1999, 123-124: 483.
[11] VAN BURCK U, SIDDONS D P, HASTINGS J B, et al. Phys Rev B, 1992, 46: 6027.
[12] RUFFER R, GERDAU E, GROTE M, et al. Nucl Instr and Meth A, 1991, 303: 495.
[13] KAWAUCHI T, FUKUTANI K, MATSUMOTO M, et al. Phys Rev B, 2011, 841 020415.
[14] GRUNSTEUDEL H, RUSANOV V, WINKLER H, et al. Hyperfine Interact, 1999, 122: 345.
[15] SMIRNOVG. Hyperfine Interact, 1999, 123-124: 31.
[16] SINGWI K S, SJOLANDER A. Phys Rev, 1960, 120: 1093.
[17] VESSCHERWM. AnnPhys, 1960, 9: 194.
[18] TOELLNER T S, HUM Y, STURHAHN W, et al. Appl Phys Lett, 1997, 71: 2112.
[19] SETO M, YODA Y, IZUMI K, et al. Phys Rev B, 2000, 61 : 11420.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%