采用差热分析(DTA),X射线衍射分析(XRD),扫描电镜(SEM)等分析手段研究了 TiO2和TiO2+ZrO2两种形核剂对Li2O-Al2O3-SiO2(LAS)系微晶玻璃的形核和晶化的影响. 结果发现,样品经过不同温度的预形核处理后,采用TiO2单一形核剂,晶化峰值温度和晶化峰 高度的变化较大,而采用TiO2+ZrO2复合形核剂,晶化峰值温度和晶化峰高度的变化较小. 当形核时间为2h,两种形核剂样品的最佳形核温度分别为745和760℃.晶化后均可得到纳米 结构的β-石英石固溶体晶相,其中采用TiO2+ZrO2复合形核剂样品的晶粒更细小.研究表 明采用复合形核剂的LAS微晶玻璃的形核过程对温度的敏感性小,有利于对形核过程进行控 制,同时形核效率高.
The effect of 4wt%TiO2 and 2wt%TiO2+2wt%ZrO2 on the nucleation and crystallization of Li2O-
Al2O3-SiO2 system glass was investigated by the method of differential thermal analysis (DTA), the differential thermal analysis (DTA), X-ray
diffraction (XRD) and the scanning electron microscopy (SEM). As the glass nucleates with a different thermal schedule, the crystallization peak
temperatures all shift to lower temperatures. The changes of nucleation temperature and nucleation peak height of the glass added with single TiO2
are larger than that of the glass added with TiO2+ZrO2. That means when TiO2 is used as nucleation agent, crystallization is more sensitive as
the variation of nucleation temperature than that of the glass added with TiO2+ZrO2. As all nucleation time is 2h, when TiO2 is used as nucleation agent,
the most effective nucleation temperature is 745℃, when TiO2+ZrO2 is used as nucleation agent, the most effective nucleation
temperature is 760℃. When heat treated at most effective thermal schedule, the samples have grain sizes of 100~150nm for TiO2 as nucleation agent,
and of 50~80nm for TiO2 +ZrO2 as nucleation agent.
参考文献
[1] | Beall G H and Pinckney L R. J. Am. Ceram. Soc., 1999, 82: 5--16. [2] Doherty P E, Lee D W, Davis R S. J. Am. Ceram. Soc., 1967, 50: 77--81. [3] Barry T I, Lay L A, Miller R P. Faraday Soc., 1970, 50: 214. [4] 逯红霞, 罗澜, 张干城(LU Hong-Xia, et al). 无机材料学?报(Journal of Inorganic Materials), 2001, 16 (2): 237--242. [5] 胡安民, 梁开明, 顾守仁(HU An-Min, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (6): 1063--1068. [6] 张玉峰, 杨涵美, 郭景坤, 等(ZHANG Yu-Feng, et al). 无机材料学报(Journal of Inorganic Materials), 1996, 11 (1): 33--37. [7] Nordmann A, Cheng Y B. J. Mater. Sci., 1997, 32: 83--89. [8] Barbieri L, Leonelli C, Manfredini T, et al. J. Am. Ceram. Soc., 1997, 80: 3077--3083. [9] Stewart D R. In: Advances in Nucleation and Crystallization in glass. Edited by Hench L L and Freeman. S W. American Ceramic Society, Columbus, OH, 1971. 83--90. [10] Riello P, Canto P, Comelato N, et al. J. Non-Crystal. Solids, 2001, 288 (1-3): 127--139.?[11] Arnault L, Gerland M, Riviere A. J. Mater. Sci., 2000, 35 (9): 2331--2345. \ [12] Sack V W and Scheidler H. Glass Science and Technology, 1966, 39 (3): 126--130. [13] Schiffner U, Pannhorst W. Glass Science and Technology, 1987, 60 (6): 211--221. [14] Schiffner U, Pannhorst W. Glass Science and Technology, 1987, 60 (7): 2239--2247. [15] Ray C S, Day D E. Ceramic Transactions, Am. Ceram. Soc., 1993, 30: 207--224. [16] Parsel D. Ceramic Transactions, Am. Ceram. Soc., 1993, 30: 285--291. [17] Xu X J, Ray C S and Day D E. J. Am. Ceram. Soc., 1991, 74: 909--914. [18] Rocherulle J. Mater. Res. Bul., 2000, 35: 2353--2361. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%