在真空电炉中利用机械合金化和热压烧结法制备出纳米晶块体钨铜合金.在进行电击穿实验时,电弧在其表面出现了分散现象,明显不同于相应传统材料电弧集中在局部的现象.这是由于纳米材料在电击穿时由于较低的逸出功、大量晶界的存在和纳米尺度的粒子能窄化钨铜界面的势垒而诱发大量电子发射所致.
Nanostructured bulk of W-Cu alloy was prepared by mechanical alloying and hot pressed sintering. The nanostructured W-Cu material shows the characteristic of the spreading electric arcs,and the commercially used W-Cu alloy exhibits the characteristic of the localized arcs during the electric breakdown. The effect of nanostructured W-Cu alloy is caused by a larger number of electrons emitted during the discharge with a low electron work function,and highly conductive grain boundaries and many nano-metre-scale grains could narrow the potential barrier at the tungsten-copper interface.
参考文献
[1] | Fursey GN. .Field emission in vacuum micro-electronics[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2003(1/4):113-134. |
[2] | Lafferty J M.Vacuum Arcs Theory and Application[M].New York:Wiley,1980 |
[3] | Farrall G A .[J].IEEE Trans Electrical Insulation,1985,20(05):815. |
[4] | Fursey G N .[J].IEEE Transactions,1985,20(04):659. |
[5] | Ding B;Yang Z;Wang X .[J].IEEE Transactions on Components Packaging And Manufacturing Technology,1996,19:76. |
[6] | Thomas Bregel;Walter K V;Roland Michal et al.[J].IEEE Transactions,1991,14:8. |
[7] | Jin-Chun Kim;Sung-Soo Ryu;In-Hyung Moon .Nanostructural Characteristics and Sintering Behavior of W-Cu Composite Powder Prepared by Mechanical Alloying[J].Journal of advanced materials,1999(4):37-44. |
[8] | Kim J C;Moon I H .[J].Nano-Structured Materials,1998,10:283. |
[9] | Kecskes L J;Trexler M D;Klotz B R et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32A:2885. |
[10] | Toyo Sakata;Masatoshi Masutani;Akira Sakai .[J].Surface Science,2003,542:205. |
[11] | Williamson G K;Hall W H .[J].Acta Metalluraica,1953,1:22. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%