欢迎登录材料期刊网

材料期刊网

高级检索

讨论了纳米尺度下体系自由能的改变对扩散模型的影响.随着体系尺度的逐渐减小,扩散模型由Fick扩散定律转变为Cahn-Hilliard扩散方程和非均匀体系非线性动力学扩散模型,原子的扩散系数也随体系自由能的变化呈现出与局部原子浓度紧密相关的趋势.纳米尺度下体系自由能的变化是导致扩散模型改变的根本原因,体系非均匀性对自由能的贡献越大导致需采用非均匀体系非线性动力学扩散模型描述扩散.

Effect of free energy of system in nanoscale on the diffusion models is discussed. With the diffusion scale decreasing, the Ficks' laws change to the Cahn-Hilliard equation and the nonlinear kinetic discrete model, and the corresponding diffusion coefficients become to the strong concentration dependence due to the change of free energy of the system. It is found that the change of free energy of system is the main influencing factor for the change of diffusion models. The contribution of nonuniformity to the free energy of system makes the nonlinear kinetic diffusion model validity for description of diffusion in nanoscale.

参考文献

[1] Cahn J W;Hilliard J E .Free energy of a nonuniform system.Ⅰ.Interracial free energy[J].Journal of Chemical Physics,1958,28:258.
[2] Cahn J W .On spinodal decomposition[J].Acta Metallurgica,1961,9:795.
[3] Philibert J.Atom movements,diffusion and mass transport in solids[M].Paris:Les Ulis,Les Editions des Physique,1991
[4] Martin G;Benoist P .Limites de validité de l'équation de tick effet de la structure atomique sur la diffusion aux temps courts et dans les forts gradients[J].Scripta Metallurgica,1977,11:503.
[5] Cook H E;Fontaine D D;Hilliard J E .A model for diffusion on cubic lattices and its application to the early stages of ordering[J].ACTA METALLURGICA,1969,17:765.
[6] Yarnauchi H;Hilliard J E .A comment on Cahn's diffusion equation[J].Scripta Metallurgica,1972,6:909.
[7] Hillert M;Staffansson L I .The regular solution model for stoichiometric phases and ionic melts[J].Acta Chemica Scandinavica,1970,24:3618.
[8] Martin G .Atomic mobility in Cahn's diffusion model[J].Physical Review B:Condensed Matter,1990,41:2279.
[9] Cao BS;Lei MK .Nonlinear diffusion of interstitial atoms[J].Physical review, B. Condensed matter and materials physics,2007(21):212301-1-212301-4-0.
[10] Greer A L;Speapen F.Synthetic modulated structure[M].New York:Academic Press,Inc,1985
[11] 曹保胜,张志鹏,雷明凯.二元非均匀体系非线性动力学扩散模型的相关性[J].金属学报,2008(03):281-286.
[12] Erdelyi Z;Beke D L;Nemes P et al.On the range of validity of the continuum approach for nonlinear diffusional mixing of multilayers[J].Philosophical Magazine A:Physics of Condensed Matter:Structure,Defects and Mechanical Properties,1999,79:1757.
[13] Erdelyi Z.;Szabo IA.;Beke DL. .Interface sharpening instead of broadening by diffusion in ideal binary alloys - art. no. 165901[J].Physical review letters,2002(16):5901-0.
[14] Beke D L;Erdelyi Z;Szabo I A et al.Nanoscale effects in diffusion[J].J Metastable and Nanocrystalline Materials,2004,19:107.
[15] Erdelyi Z;Katona G L;Beke D L .Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubilit[J].Physical Review B:Condensed Matter,2004,69:113407.
[16] Cao BS;Lei MK .Nonlinear interdiffusion in binary nanometer-scale multilayers submitted to thermal annealing[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2008(8):1843-1848.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%