欢迎登录材料期刊网

材料期刊网

高级检索

新型口钛合金具有良好的耐磨性和力学性能、高抗腐蚀性以及优良的生物相容性,因而在生物医学领域得到了越来越广泛的应用.综述了钛合金的发展阶段及新型超弹性β钛舍金的研究发展状况和最新进展,探讨了几种热处理工艺对钛合金超弹性的影响,介绍了几种钛合金表面改性方法,结合我国研究现状提出了新型超弹性β钛合金存在的问题,展望了其研究发展方向.

参考文献

[1] Kim H Y;Kim J I;Inamura T et al.Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28) at% Nb alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:839.
[2] Miyazaki S;Kim H Y;Hosoda H .Development and characterization of Ni-free Ti-base shape memory and superelas tic alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438:18.
[3] 刘福,吴树建,王立强.新型医用钛合金的特点及发展现状[J].热加工工艺,2008(12):100-103.
[4] Ping D H;Cui C Y;Yin F X et al.TEM investigations on martensite in a Ti-Nb-hased shape memory alloy[J].Scripta Materialia,2006,25:1305.
[5] Chai Y W;Kim H Y;Hosoda H et al.Self-accommodation in Ti-Nb shape memory alloys[J].Acta Materialia,2009,57:4O54.
[6] Lin DJ;Lin JH;Ju CP .Structure and properties of Ti-7.5Mo-xFe alloys.[J].Biomaterials,2002(8):1723-1730.
[7] T. Zhou;M. Aindow;S. P. Alpay;M. J. Blackburn;M. H. Wu .Pseudo-elastic deformation behavior in a Ti/Mo-based alloy[J].Scripta materialia,2004(3):343-348.
[8] Sutou Y;Furukawa A;Suzuki M et al.Application of Nifree Ti-Mo-Sn shape memory alloys to medical tools[J].Transactions of the Materials Research Society of Japan,2007,32:639.
[9] Huiskes R;Weinans H;Riebergen B .The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials[J].Clinical Orthopaedics and Related Research,1992,274:124.
[10] Sumner D;Gatante J .Determinants of stress shielding:Design versus materials versus interface[J].Clinical Orthopaedics and Related Research,1992,274:202.
[11] Niinomi M .Biologically and mechanically biocompatible titanium alloys[J].Materials Transactions,2008,49:2170.
[12] Wang Y B;Zheng Y F .Corrosion behaviour and biocompatibility evaluation of low modulus Ti-16Nb shape memory alloy as potential biomaterial[J].Materials Letters,2009,63:1293.
[13] Kim JI;Kim HY;Inamura T;Hosoda H;Miyazaki S .Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):334-339.
[14] Hosoda H;Kinoshita Y;Fukui Y et al.Effects of short time heat treatment on superelastic properties of a Ti-Nb-Al biomedical shape memory alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:870.
[15] Inamura T;Fukui Y;Hosocla H et al.Mechanical properties of Ti-Nb biomedical shape memory alloys containing Ge or Ga[J].Materials Science and Engineering C:Biomimetic and Supramolecular Systems,2005,25:426.
[16] Kim H Y;Hashimoto S;Kim J I et al.Effect of Ta addition on shape memory behavior of Ti-22Nb alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,417:120.
[17] Arockiakumar R;Park J K .Effect of[alpha]-precipitation on the superelastic behavior of Ti-40at%Nb-0 3at% O alloy processed by equal channel angular extrusion[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:2709.
[18] Ping D H;Mitarai Y;Yin F X .Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy[J].Scripta Materialia,2005,52:1287.
[19] Gonzalez M;Pena J;Manero J M et al.Design and characterization of new Ti-Nb-Hf alloys[J].Journal of Materials Engineering and Performance,2009,18:490.
[20] Hao YL;Li SJ;Sun SY;Zheng CY;Yang R .Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.[J].Acta biomaterialia,2007(2):277-286.
[21] Nobuhito Sakaguchi;Mitsuo Niinomi;Toshikazu Akahori;Junji Takeda;Hiroyuki Toda .Relationships between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr system alloys[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2005(3):363-369.
[22] Niinomi M;Akahori T;Nakai M .In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti-Nb-Ta-Zr system beta-type titanium alloy for biomedical applications[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2008(3):406-413.
[23] Tane M;Akita S;Nakano T .Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals[J].Acta Materialia,2008,56:2856.
[24] 于振涛,郑玉峰,周廉,王本力,牛金龙,皇甫强,张亚锋.新型Ti-3Zr-2Sn-3Mo-15Nb钛合金的形状记忆和超弹性[J].稀有金属材料与工程,2008(01):1-5.
[25] Kent D;Wang G;Yu Z et al.Pseudoelastie behaviour of a[beta]Ti-25Nb3Zr-3Mo-2Sn alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:2246.
[26] Delvat E;Gordin D M;Gloriant T et al.Microstructure,mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys[J].Journal of the Mechanical Behavior of Biomedical Materials,2008,1:345.
[27] Kim H Y;Ohmatsu Y;Kim J I et al.Effect of Nb addition on shape memory behavior of Ti-Mo-Ga alloys[J].Materials Transactions,2006,47:518.
[28] Kim H Y;Ohmatsu Y;KimJ I et al.Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys[J].Materials Transactions,2004,45:1090.
[29] Maeshima T;Nishida M .Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys[J].Materials Transactions,2004,45:1096.
[30] Maeshima T;Ushimaru S;Yamauchi K et al.Effects of Sn content and aging conditions on superelasticity in biomedical Ti-Mo-Sn alloys[J].Journal of the Japan Institute of Metals,2005,69:654.
[31] Maeshima T;Ushimaru S;Yamauchi K et al.Effect of heat treatment on shape memory effect and superelasticity in Ti-Mo-Sn alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438:844.
[32] Xu L J;Chen Y Y;Liu Z G et al.The microstrueture and properties of Ti-Mo-Nb alloys for biomedical application[J].Journal of Alloys and Compounds,2008,453:320.
[33] Buenconsejo P J S;Kim H Y;Hosoda H et al.Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy[J].Acta Materialia,2009,57:1068.
[34] Mareci D;Chelariu R;Gordin DM .Comparative corrosion study of Ti-Ta alloys for dental applications.[J].Acta biomaterialia,2009(9):3625-3639.
[35] Li,Y.;Xiong,J.;Wong,C.S.;Hodgson,P.D.;Wen,C. .Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering[J].Tissue engineering, Part A,2009(10):3151-3159.
[36] Cui Y;Li Y;Luo K et al.Microstructure and shape memory effect of Ti-20Zr-10Nb alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:652.
[37] Oliveira N T C et al.Development of Ti-Mo alloys for biomedical applications:Microstructure and electrochemical characterization[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,452:727.
[38] Takemoto Y;Miyake Y;Senuma T .Microstructure and mechanical properties of Ti-Mo and Ti-6Mo-X-Y alloys[J].Journal of the Japan Institute of Metals,2009,73:752.
[39] Wu M H;Russo P A;Ferrero J G.Pseudoelastie beta TiMo-VNb-Al alloys[A].Los Angeles,California,USA,2004:81.
[40] Kim J;Kim H Y;Inamura T et al.Effect of annealing temperature on microstructure and shape memory characteristics of Ti-22Nb-6Zr(at%) biomedical alloy[J].Materials Transactions,2006,47:505.
[41] Tahara M;Kim H Y;Hosoda H et al.Cyclic deformation behavior of a Ti-26 at.% Nb alloy[J].Acta Materialia,2009,57:2461.
[42] Nakayama Y;Yamamuro T;Kotoura Y et al.In vivo measurement of anodic polarization of orthopaedic implant alloys:Comparative study of in vivo and in vitro experiments[J].Biomaterials,1989,10:420.
[43] Nakai, M;Niinomi, M;Akahori, T;Ohtsu, N;Nishimura, H;Toda, H;Fukui, H;Ogawa, M .Surface hardening of biomedical Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI by gas nitriding[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):193-201.
[44] 武丽华,张健,张相春,陈福.医用Ti合金表面生物玻璃涂层的制备与研究[J].山东陶瓷,2008(01):8-10.
[45] Han J;Sheng G M;Hu G X .Nanostructured surface layer of Ti-4A1-2V by means of high energy shot peening[J].ISIJ International,2008,48:218.
[46] Mishra R S;$tolyarov V V;Echer C et al.Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti-6AI-4V alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,298:44.
[47] 郝玉琳,杨锐.纳米高强Ti-Nb-Zr-Sn合金[J].金属学报,2005(11):1183-1189.
[48] 顾新丰,蒋垚,韩培,张小农.钛合金表面纳米化对成骨细胞黏附的影响[J].中国临床康复,2006(25):46-48,插图25-3.
[49] Wei D;Zhou Y;Jia D et al.Effect of applied voltage on the structure of microarc oxidized TiO2-based bioecramic films[J].Materials Chemistry and Physics,2007,104:177.
[50] Wei D;Zhou Y;Jia D;Wang Y .Characteristic and in vitro bioactivity of a microarc-oxidized TiO(2)-based coating after chemical treatment.[J].Acta biomaterialia,2007(5):817-827.
[51] Wei D;Zhou Y;Yang C .Characteristic and microstructure of the microarc oxidized TiO2-based film containing P before and after chemical-and heat treatment[J].Applied Surface Science,2009,255:7851.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%