欢迎登录材料期刊网

材料期刊网

高级检索

用硝酸盐热分解法合成了单相粉末样品Gd1-xEuxAl3(BO3)4(0≤x≤1)。研究了Eu3+在GdAl3(BO3)4中的紫外和真空紫外光谱性质。GdAl3(BO3)4:Eu3+中稀土离子占据非中心对称的格位,Eu3+在其中的特征发射以5D07F2电偶极跃迁为主。在147nm激发下GdAl3(BO3)4:Eu3+呈色坐标为(0.645,0.330)的强红光发射,说明是非常有前途的PDP用红色发光材料。在GdAl3(BO3)4:Eu3+的真空紫外光谱中观察到两个峰,158nm的激发带归属于BO3基团的吸收,258nm处的激发带为Eu3+→O2-的电荷转移跃迁带。在147nm激发下,GdAl3(BO3)4:Eu3+的红光发射强度随着Eu3+浓度的增加而减弱,而在258nm激发下随Eu3+浓度的增大Eu3+的红光发射增强,说明它们发光的机理不同。

Single phase of Gd1-xEuxAl3(BO3)4(0≤x≤1) was obtained by the evaporation of its nitrate solution,
and calcinations at 1000℃ for 24h. Ultraviolet (UV) and vacuum ultraviolet (VUV) luminescent properties of Eu3+ in GdAl3(BO3)4
were systematically studied. In GdAl3(BO3)4:Eu3+, rare earths are located in noncentrosymmetric sites, and the predominant emission of
Eu3+ is 5D07F2. GdAl3(BO3)4:Eu3+ shows intense red emission with CIE chromaticity coordinates of (0.645, 0.330)
under 147nm excitation, it indicates that this phosphor is a promising new luminescent material for application in plasma display panel (PDP). The VUV
excitation spectra of activated GdAl3(BO3)4:Eu3+ are composed of two broad bands. The 158nm excitation band is assigned to the energy level
of BO3 groups and the other band centered at 258nm is assigned to the charge transfer transition between Eu3+ and O2-. The GdAl3(BO3)4:Eu3+
shows maximum intensity emission for the doped 50at% of Eu3+ under 258nm excitation and 5at% of Eu3+ under 147nm excitation, respectively.
Therefore, the energy relaxation pathway to the Eu3+ sites should be different.

参考文献

[1] Oversluizen G, de Zwart S, Gillies M F, et al. The 8th IUMRS Internationnl Conference on Electronic Materials, Xi,an, P. R. China, June, 2002, 10-14: 273.
[2] Ziran H, Blasse G. Mater. Chem. Phys., 1985, 12: 257--261.
[3] Th J. de Hair W, Konijnendijk W L. J. Electrochem. Soc., 1980, 127: 161--164.
[4] Blasse G. J. Chem. Phys., 1966, 45: 2356--2360.
[5] Th J. de Hair W. J. Lumin., 1979, 18/19: 797--800.
[6] Mills A D. Inorg. Chem., 1962, I: 960--961.
[7] Graf D L, Bradley W F. Acta Crystallogr., 1962, 15: 238--242.
[8] Blasse G, Grabmajer E C. Luminescent Materials, Berlin: Springer-Verlag, 1994. 41.
[9] Chadeyron G, Mahiou R, Arbus A, et al. J. Lumin., 1997, 72-74: 564--566.
[10] Chadeyron G, EL-Ghozzi M, Mahiou R, et al. J. Solid State Chem., 1997, 128: 261--265.
[11] De Vries A J, Kiliaan H S, Blasse G, J. Solid State Chem., 1986, 65: 190--198.
[12] Park W, Jones T C, Tong W, et al. J. Appl. Phys., 1998, 84: 6852--6858.
[13] Koike J, Kojima T. J. Electrochem. Soc., 1979, 126: 1008--1010.
[14] Mayolet A, Zhang W, Martin P, et al. J. Electrochem. Soc., 1996, 143: 330--333.
[15] Cheng L K, Bosenberg W, Tang D L, et al. Growth, 1988, 89: 553--559.
[16] Cheng C, Wu Y, Jiang A, et al. J. Opt. Soc. Am., 1989, B 6: 616--621.
[17] Srivastava A M, Doughty D A, Beers W W. J. Electrochem. Soc., 1996, 143: 4113--4116.
[18] Srivastava A M, Doughty D A, Beers W W. J. Electrochem. Soc., 1997, 144: L190--L192.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%