欢迎登录材料期刊网

材料期刊网

高级检索

双模晶体相场模型是研究复杂晶体结构相变的重要方法.分别介绍了Kuo-An Wu和Greenwood提出的两种双模晶体相场模型,简述了两种模型各自的构造特点:Kuo-An Wu通过在模型中多引入一族倒易矢量来描述复杂晶体结构,Greenwood则通过在自由能函数中引入多峰和构造两点直接相关函数来完成,两者都在模拟三角结构相向正方结构相的转变中得到了广泛应用;进一步指出了Kuo-An Wu模型相转变的影响因素及高斯峰对Green-wood模型相图的影响;最后指明了晶体相场在相变模拟研究中的发展方向.

参考文献

[1] 刘智恩.材料科学基础[M].西安:西北工业大学出版社,2007
[2] 张跃;谷景华;尚家香.计算材料学基础[M].北京:北京航空航天大学出版社,2007
[3] D.罗伯;项金钟;吴兴惠.计算材料学[M].北京:化学工业出版社,2002
[4] 崔怀磊,王锦程,杨根仓.凝固微观组织晶体相场模型的研究进展[J].铸造技术,2009(01):120-124.
[5] Elder KR;Provatas N;Berry J;Stefanovic P;Grant M .Phase-field crystal modeling and classical density functional theory of freezing[J].Physical review, B. Condensed matter and materials physics,2007(6):4107-1-4107-14-0.
[6] Elder K R;Katakowski M et al.Modeling elasticity in crystal growth[J].Physical Review Letters,2001,88:245701.
[7] 张琪,王锦程,张亚丛,杨根仓.多晶凝固及后续调幅分解过程的晶体相场法模拟[J].物理学报,2011(08):730-736.
[8] Tóth, G.I.;Tegze, G.;Pusztai, T.;Tóth, G.;Gránásy, L. .Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D[J].Journal of Physics. Condensed Matter,2010(36):364101-1-364101-17.
[9] A Jaatinen;T Ala-Nissila .Extended phase diagram of the three-dimensional phase field crystal model[J].Journal of Physics. Condensed Matter,2010(20):205402-1-205402-4.
[10] Jaatinen, A.;Ala-Nissila, T. .Eighth-order phase-field-crystal model for two-dimensional crystallization[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(6 Pt.1):061602-1-061602-11.
[11] Jaatinen A;Achim C V;Elder K R et al.Thermodynamics of bcc metals in phase-field-crystal models[J].Physical Review E,2009,80(03):031602.
[12] Wu, K.-A.;Adland, A.;Karma, A. .Phase-field-crystal model for fcc ordering[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(6 Pt.1):061601-1-061601-16.
[13] Free Energy Functionals for Efficient Phase Field Crystal Modeling of Structural Phase Transformations[J].Physical review letters,2010(4):45702.1-45702.4.
[14] Greenwood, Michael;Rottler, J?rg;Provatas, Nikolas .Phase-field-crystal methodology for modeling of structural transformations[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2011(3 Pt.1):031601-1-031601-12.
[15] Elder K R;Huang Z F;Provatas N .Amplitude expansion of the binary phase-field-crystal model[J].Physical Review E,2010,81(01):011602.
[16] Goldenfeld N;Athreya BP;Dantzig JA .Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2005(2):601-1-601-4-0.
[17] Elder KR;Grant M .Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2004(5 Pt.1):1605-1-1605-18-0.
[18] 高英俊,罗志荣,黄创高,卢强华,林葵.晶体相场方法研究二维六角相向正方相结构转变[J].物理学报,2013(05):88-97.
[19] Cheng M;Warren JA .An efficient algorithm for solving the phase field crystal model[J].Journal of Computational Physics,2008(12):6241-6248.
[20] 张帅 .小角度晶界结构与相变的二模晶体相场研究[D].西安:西北工业大学,2013.
[21] Martin J W;Doherty R D;Cantor B.Stability of microstructure in metallic systems second edition[M].Cambridge:Cambridge University Press,1997
[22] 郭灿,王志军,王锦程†,郭耀麟,唐赛.直接相关函数对双模晶体相场模型相图的影响*[J].物理学报,2013(10):411-418.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%