{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了用低频方波电流对不锈钢进行电解着色,探讨了电流参数对着色效果的影响.通过记录在施加电流过程中不锈钢试片的响应电位随时间的变化,从而判断发生着色的可能性,并且设计实验确定了适用的工艺条件,最后制备出各种颜色的不锈钢.","authors":[{"authorName":"贾法龙","id":"8bc9acaf-bcc3-4906-9227-51d4fff64a72","originalAuthorName":"贾法龙"},{"authorName":"郭稚弧","id":"03ac76ef-81df-407d-8b0d-d24bc61c903c","originalAuthorName":"郭稚弧"},{"authorName":"李卓民","id":"8cf37a48-51b1-4f2e-9ad8-04308b9f656a","originalAuthorName":"李卓民"}],"doi":"","fpage":"105","id":"a000da46-961b-4f25-8b68-abf26ca067a6","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"387b92b2-ebc7-413c-9a14-4ae05524ea24","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"b18de2de-267f-4d02-8b0c-4a5153b2b5c3","keyword":"电解着色","originalKeyword":"电解着色"},{"id":"d4ecce7c-cadb-4589-88fa-c15779ed7406","keyword":"方波电流","originalKeyword":"方波电流"}],"language":"zh","publisherId":"fsyfh200103004","title":"低频方波电流进行不锈钢电解着色的研究","volume":"22","year":"2001"},{"abstractinfo":"采用电化学方法和阳极消耗率评价法研究了高硅铸铁阳极在方波脉冲电流作用下的电化学性能.结果表明,方波脉冲电流作用下,阳极表面状态的变化与直流作用时基本相同,钝化膜未被破坏.同等条件下阳极的消耗率比直流作用时的小.因此,在所研究的介质中高硅铸铁阳极可以用于方波脉冲电流阴极保护.","authors":[{"authorName":"邱于兵","id":"49185a80-8215-4084-b05c-e495f8a8905c","originalAuthorName":"邱于兵"},{"authorName":"李建梅","id":"bff4e3ea-8e63-4098-b96d-71d0a3efa1e7","originalAuthorName":"李建梅"},{"authorName":"郭稚弧","id":"ee9c765e-0c0f-4b84-80df-bafb3d5924f7","originalAuthorName":"郭稚弧"},{"authorName":"魏伯康","id":"f4cc9a6d-38db-4de5-be18-6a0da2549c4f","originalAuthorName":"魏伯康"},{"authorName":"林汉同","id":"4837ec84-726d-401c-aba8-483bd488eb8a","originalAuthorName":"林汉同"}],"doi":"10.3969/j.issn.1001-1560.2000.02.025","fpage":"41","id":"cc631f7a-1d16-4cc3-8b36-7a676b5aff24","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ae31c882-584a-4460-b004-fe405a192d59","keyword":"方波脉冲电流","originalKeyword":"方波脉冲电流"},{"id":"cd7bffa1-2202-4507-a3f7-dd9526bf3a53","keyword":"高硅铸铁阳极","originalKeyword":"高硅铸铁阳极"},{"id":"789b85c7-7eff-4cbc-9bf9-953f1761e3d6","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"42b4ae88-f3b4-4615-8206-d8387a985df6","keyword":"阴极保护","originalKeyword":"阴极保护"}],"language":"zh","publisherId":"clbh200002025","title":"方波脉冲电流作用下高硅铸铁阳极的电化学性能","volume":"33","year":"2000"},{"abstractinfo":"在3%NaCl、006%NaCl和自来水3种实验介质中,研究了Q 235钢的方波脉冲电流幅值(I\\-A)、频率(f)和占空比(P)的变化对于阴极极化 电位(E)和极化幅度(ΔE)的影响规律.结果表明,E和ΔE随方波I\\-A 、f和P的增加而变负,但当E接近或负于-100 V(SCE)时,再增加各电流参数的值, E和ΔE的负移程度都大大减小.各电流参数对ΔE的影响程度不同,并与E值 密切 相关.提出调整电流参数总的原则和方法是:在达到所要求的保护效果的前提下,尽可能采 用低P、低IA的电流参数,并优先调整f,再调整I\\-A.","authors":[{"authorName":"邱于兵","id":"d50a4713-2db7-42e9-ae6b-fd89fc15bcb1","originalAuthorName":"邱于兵"},{"authorName":"郭稚弧","id":"38ff5efe-14c2-4f87-ad25-9d47e40da7b9","originalAuthorName":"郭稚弧"},{"authorName":"林汉同","id":"a4c4e41a-01e1-4ce7-9d30-6835518efc2c","originalAuthorName":"林汉同"}],"categoryName":"|","doi":"","fpage":"367","id":"465bc375-026a-4615-bd60-c38f5e4cc0e2","issue":"6","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"fbf76288-2f14-4c84-9e22-52b22f54514c","keyword":"电流参数","originalKeyword":"电流参数"},{"id":"00636971-bb63-4d9a-a21c-1c961943d66d","keyword":"square wave","originalKeyword":"square wave"},{"id":"14fc3241-405f-4c8f-9d2b-1114f38a825d","keyword":"pulsed current","originalKeyword":"pulsed current"},{"id":"d2583066-8c9b-45ff-8855-ddef7eadabe7","keyword":"cathodic protection","originalKeyword":"cathodic protection"},{"id":"af35e1d8-a602-4ec0-a8a0-f7858649e75b","keyword":"mechanism","originalKeyword":"mechanism"},{"id":"8ae946a5-1b00-4c77-8f67-82f99ef64dca","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-4537_2002_6_10","title":"方波脉冲电流阴极保护机理研究Ⅱ 电流参数的影响","volume":"22","year":"2002"},{"abstractinfo":"为了弄清脉冲电流阴极保护的基本规律,为现场应用提供科学的理论依据和参考,采用方波脉冲电流对模拟管线体系脉冲电流阴极保护的电位分布规律以及脉冲电流参数和其他因素对电位分布的影响进行了研究.在3.5 m(长)×2.0 m(宽)×3.0 m(深)的水池中,建立了均匀介质模拟水平管道体系,研究了方波脉冲电流参数(频率、幅值、占空比)、阳极距离等因素对方波脉冲电流阴极保护效果的影响,并将直流与方波脉冲电流的阴极保护效果进行了对比.结果表明,随着方波脉冲电流频率、幅值或占空比的增加,阴极极化电位分布曲线逐渐负移,极化幅度逐渐增加,且阴极表面的电位分布远比直流作用时均匀,有效保护深度明显延长,所需平均保护电流更小.","authors":[{"authorName":"余成平","id":"c621ec2a-2566-48ee-882e-5a96c11fe06c","originalAuthorName":"余成平"},{"authorName":"郭兴蓬","id":"e5db5006-e0c9-4d1a-a8f7-83476310531f","originalAuthorName":"郭兴蓬"},{"authorName":"邱于兵","id":"9652e12c-231a-428b-951e-649338059419","originalAuthorName":"邱于兵"},{"authorName":"程明山","id":"4fd13848-1cb6-4ae7-8f4f-7bcbce01fdaf","originalAuthorName":"程明山"}],"doi":"10.3969/j.issn.1001-1560.2004.08.016","fpage":"39","id":"0d491bb3-6577-4c1e-a204-bc3647787f73","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"c93db25e-5e52-4bd6-b21e-60ea8e2625f4","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"5d265b49-7cd8-4548-b152-6a5f44bfa2d1","keyword":"管道系统","originalKeyword":"管道系统"},{"id":"b054a7af-ece1-40be-a857-0be5a9dfe860","keyword":"方波","originalKeyword":"方波"},{"id":"afdb1c49-8feb-4650-9938-96ec49a7c90e","keyword":"脉冲电流","originalKeyword":"脉冲电流"}],"language":"zh","publisherId":"clbh200408016","title":"模拟管线系统中方波脉冲电流阴极保护规律的研究","volume":"37","year":"2004"},{"abstractinfo":"应用 Laplace 变换分析求得了在线性极化区内向金属电极施加方波电流扫描的响应函数方程.它在 E~i 座标系中为两条长度相等的平行线。用它可以方便地测量 R_P、C 和 R_S 等电化学参数而不受溶液电阻的影响。本方法对弛豫时间常数较大的体系尤为适用。","authors":[{"authorName":"毕新民","id":"a4e77d00-f4c5-4f1a-9b4b-52d425be9025","originalAuthorName":"毕新民"},{"authorName":"曹楚南","id":"8fde5cd7-a5bb-496c-be96-f033115146c1","originalAuthorName":"曹楚南"}],"categoryName":"|","doi":"","fpage":"43","id":"ba1e03a3-19a7-4ed7-a3f5-ff07a8b926e0","issue":"1","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[],"language":"zh","publisherId":"1005-4537_1989_1_9","title":"方波电流扫描的响应函数及其应用","volume":"9","year":"1989"},{"abstractinfo":"采用挂片法,在人造海水和自来水介质中,对Q235(A3)钢在直流和方波脉冲电流阴极保护状态下的保护效果进行了对比研究,得出了具体的保护度和保护效率.结果表明,实验条件下脉冲电流阴极保护与直流阴极保护相比,二者的保护度相当,而脉冲电流阴极保护有更小的平均电流消耗和更高的保护效率.","authors":[{"authorName":"邱于兵","id":"dd119167-82e4-4e06-8c66-301925d27194","originalAuthorName":"邱于兵"},{"authorName":"朱鸿赫","id":"ce4ca292-92c9-4b5b-8877-eeecc3276a25","originalAuthorName":"朱鸿赫"},{"authorName":"余成平","id":"cc7649e6-28ea-4e11-9d3d-c4e2f7a8db26","originalAuthorName":"余成平"},{"authorName":"郭兴蓬","id":"7854c4cd-9272-46b1-8691-02846ec4e1a8","originalAuthorName":"郭兴蓬"},{"authorName":"程明山","id":"649b7428-3ff1-4e40-82b7-88f2032e0cf4","originalAuthorName":"程明山"}],"doi":"10.3969/j.issn.1005-748X.2004.12.005","fpage":"520","id":"bf379df3-62e4-4ae3-b23a-2f2edab397a0","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"0a53e689-108e-4ba5-b5fb-4328e0356c22","keyword":"挂片法","originalKeyword":"挂片法"},{"id":"aec39dfa-1076-4c46-af85-8f85beac9206","keyword":"方波脉冲电流","originalKeyword":"方波脉冲电流"},{"id":"51d80caf-78ca-415d-8de4-3aca557bc47a","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"bb6dd135-7401-44cc-9c64-29aba7a0b5dd","keyword":"保护度","originalKeyword":"保护度"},{"id":"e372ce16-22e5-426c-accd-ae63233f0028","keyword":"保护效率","originalKeyword":"保护效率"}],"language":"zh","publisherId":"fsyfh200412005","title":"方波脉冲电流阴极保护效果的实验研究","volume":"25","year":"2004"},{"abstractinfo":"Nano-SQUID因为具备可能探测到单电子自旋的能力而受到广泛关注.为进一步提高该器件的灵敏度,不但要优化器件制备工艺,而且也要发展低噪音高效率的测量系统.通常,由于nano-SQUID存在回滞现象,导致在测量方面nano-SQUID无法使用标准的SQUID读出电路.本文设计了一种全新的方波脉冲测量方法,由信号发生器串联一个大电阻发送电流脉冲,注入nano-SQUID,并采用ADWin数据采集卡读取器件两端的电压.该方法不仅可以消除电流—电压回滞现象带来的测量上的不便,而且可以通过缩短脉冲周期的方法进一步提高系统的测量速度.在此基础上,通过降低系统方波脉冲占空比ton:toff,增加超导器件因受到脉冲电流激发后的冷却时间,减小热噪音对临界电流准确测量的影响,从而获得准确的临界电流—磁通调制曲线,调制深度△Ic/Ic=7.9%.此外,本文对采用本测量方法的nano-SQUID磁通噪音表征方法进行了讨论,测得器件磁通噪声为72 μφ0/Hz1/2,等效磁性测量精度为1.19×10-16 emu/ Hz1/2.","authors":[{"authorName":"柳西西","id":"f490ef88-1909-43c1-b33b-6b82f3f74246","originalAuthorName":"柳西西"},{"authorName":"刘晓宇","id":"1bd8ec8d-b36b-4dcc-b388-1c381e24c82d","originalAuthorName":"刘晓宇"},{"authorName":"汪浩","id":"87c8357c-e93b-4c42-b23a-98e7e9e345e4","originalAuthorName":"汪浩"},{"authorName":"陈垒","id":"f8e0384c-de73-4788-acfc-b0e36854ee94","originalAuthorName":"陈垒"},{"authorName":"王镇","id":"d51511a1-ea6b-4779-b79c-7711d254f24c","originalAuthorName":"王镇"}],"doi":"","fpage":"276","id":"4031261b-68e5-49e9-8cb6-8cd87785e93c","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"1ec6b369-ecdb-4450-b8a6-55af2705979b","keyword":"nano-SQUID","originalKeyword":"nano-SQUID"},{"id":"37e91c97-7025-431a-9521-6092e4d6e699","keyword":"方波脉冲测量","originalKeyword":"方波脉冲测量"},{"id":"dba5f4ae-cd42-4478-ab6d-e1329267a345","keyword":"临界电流","originalKeyword":"临界电流"},{"id":"6efa9d23-f94b-4f91-a260-a6944b5920ac","keyword":"热效应","originalKeyword":"热效应"}],"language":"zh","publisherId":"dwwlxb201504006","title":"Nano-SQUID中方波脉冲测量方法对于临界电流的精确表征","volume":"37","year":"2015"},{"abstractinfo":"采用新型超快速变换HPVP-TIG电弧焊接工艺进行2219-T87高强铝合金焊接, 研究脉冲电流特征参数对焊接接头组织和力学性能的影响. 结果表明, 加入超音频脉冲方波电流(UPSWC)作用后, 铝合金焊缝区显微组织由粗大柱状晶转变为细小等轴晶, 在焊缝区内除了等轴树枝晶外, 还存在一种呈带状分布的极细小等轴非枝晶组织, 同时焊缝熔合区宽度明显减小, 焊接接头抗拉强度和断后伸长率显著提高. 在一定范围内增加脉冲电流幅值, 提高脉冲频率, 减小占空比, 可增强组织细化作用, 提高接头力学性能. 与未加入UPSWC作用相比, 脉冲电流幅值100 A, 脉冲频率40 kHz, 占空比20%时, 接头抗拉强度和断后伸长率分别提高约22%和111%.","authors":[{"authorName":"从保强齐铂金周兴国罗军","id":"3e1554d6-5b9d-4386-b78a-485cd3f435df","originalAuthorName":"从保强齐铂金周兴国罗军"}],"categoryName":"|","doi":"","fpage":"1057","id":"b148dfcb-d3bd-4adf-9e30-8bf4843b1363","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4ddc6df3-589f-4639-9a6b-7c2231d5376a","keyword":"高强铝合金","originalKeyword":"高强铝合金"},{"id":"fc6ed784-36db-4b04-9680-11e00ada28e3","keyword":"ultrasonic pulse current","originalKeyword":"ultrasonic pulse current"},{"id":"a0a21681-3596-4f6a-a5ef-1bb2db5479a6","keyword":"variable polarity","originalKeyword":"variable polarity"},{"id":"1d0ae4df-c3a8-4356-9c33-8e1d9bf7e74e","keyword":"equiaxed
\nnon-dentrite","originalKeyword":"equiaxed
\nnon-dentrite"},{"id":"607b60a6-0046-4580-bc4f-65ae268d5f76","keyword":" mechanical property","originalKeyword":" mechanical property"}],"language":"zh","publisherId":"0412-1961_2009_9_17","title":"超音频脉冲方波电流参数对2219铝合金焊缝组织和力学性能的影响","volume":"45","year":"2009"},{"abstractinfo":"采用新型超快速变换HPVP-TIG电弧焊接工艺进行2219-T87高强铝合金焊接,研究脉冲电流特征参数对焊接接头组织和力学性能的影响.结果表明,加入超音频脉冲方波电流(UPSWC)作用后,铝合金焊缝区显微组织由粗大柱状晶转变为细小等轴晶,在焊缝区内除了等轴树枝晶外,还存在一种呈带状分布的极细小等轴非枝晶组织,同时焊缝熔合区宽度明显减小,焊接接头抗拉强度和断后伸长率显著提高.在一定范围内增加脉冲电流幅值,提高脉冲频率,减小占空比,可增强组织细化作用,提高接头力学性能.与未加入UPSWC作用相比,脉冲电流幅值100 A,脉冲频率40 kHz,占空比20%时,接头抗拉强度和断后伸长率分别提高约22%和111%.","authors":[{"authorName":"从保强","id":"3ab76e68-151a-49c9-a2c3-e58e2150d0cc","originalAuthorName":"从保强"},{"authorName":"齐铂金","id":"2fa26806-3637-4e5b-bed8-30124a3e5618","originalAuthorName":"齐铂金"},{"authorName":"周兴国","id":"b4c740db-97f5-4b5a-ac82-94fa1c60ba9a","originalAuthorName":"周兴国"},{"authorName":"罗军","id":"15fbcc9c-ccdf-4d1f-b2b2-26a6598b5aa4","originalAuthorName":"罗军"}],"doi":"10.3321/j.issn:0412-1961.2009.09.006","fpage":"1057","id":"5b222358-d0cf-4433-a2a6-534cec373141","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"40949b92-fc81-4907-b6cf-3c6189bc3edb","keyword":"高强铝合金","originalKeyword":"高强铝合金"},{"id":"e9eb47bb-d206-4fb8-b44c-cacbc6a9ae46","keyword":"超音频脉冲电流","originalKeyword":"超音频脉冲电流"},{"id":"bce3d0e6-2c7d-4d54-9d24-d017327dd4a7","keyword":"变极性","originalKeyword":"变极性"},{"id":"a06ae261-1415-4c45-8e8c-8a751a317df5","keyword":"等轴非枝晶","originalKeyword":"等轴非枝晶"},{"id":"f273f341-31de-4c66-903f-cfdc970bbbd6","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsxb200909006","title":"超音频脉冲方波电流参数对2219铝合金焊缝组织和力学性能的影响","volume":"45","year":"2009"},{"abstractinfo":"为了建立镀铬液Cr(Ⅵ)含量的快速测定方法,研究了Cr(Ⅵ)的电化学行为.在0.1 mol/L的氨水缓冲溶液(pH=10.0)中,Cr(Ⅵ)于-1.45 V(vs SCE)出现一灵敏的方波伏安峰,峰电流ip的高低与Cr(Ⅵ)的浓度在(0.1~2.0)×103mg/L范围内呈现良好的线性关系,由此建立了快速测定环境中Cr(Ⅵ)含量的方波伏安法.结果表明,此方法具有较高的分析测试准确性和灵敏度,方法的回归方程为ip(μA)=0.287 0+0.642 4C(mg/L),相关系数为0.988 6,检出限为0.05 mg/L Cr(Ⅵ),标准偏差为2.8%.该方法应用于实际样品电镀铬液及其废液中Cr(Ⅵ)含量的测定,结果满意.","authors":[{"authorName":"许琦","id":"4d5c324f-e03e-42fe-b807-ffb745c79c82","originalAuthorName":"许琦"},{"authorName":"严金龙","id":"e44a0fa4-3e43-4f2c-9eee-6866cedacfe9","originalAuthorName":"严金龙"}],"doi":"10.3969/j.issn.1001-1560.2004.06.020","fpage":"50","id":"ce62bdf3-9638-4a12-a2ae-0c2a15907f4b","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d498282a-14f9-4458-8242-8c1a1c28b4cf","keyword":"方波伏安法","originalKeyword":"方波伏安法"},{"id":"74a7aecc-5f69-46f1-8246-97445aaa958a","keyword":"Cr(Ⅵ)","originalKeyword":"Cr(Ⅵ)"},{"id":"d7856066-2fdf-4502-b596-cb36125780ce","keyword":"废水","originalKeyword":"废水"}],"language":"zh","publisherId":"clbh200406020","title":"电镀液中Cr(Ⅵ)含量的方波伏安法测定","volume":"37","year":"2004"}],"totalpage":949,"totalrecord":9490}