欢迎登录材料期刊网

材料期刊网

高级检索

发展了能预报复合材料有效性质的随机微结构胞元模型以预测单向纤维增强复合材料横向热导率。研究了能反映宏观有效性质的模型最小化问题, 探讨了微结构影响宏观有效热传导性能的机制。结果表明: 通过对模型指定周期边界条件并且以多个合适的小规模模型计算的平均值取代大模型计算, 可大大改进收敛性并提高计算效率, 从10×10个到30×30个子胞的模型, 所得有效热导率计算结果的最大相对变化量仅为0.6%。不同纤维排列引起热流穿过热阻大的基体的路径长度改变, 造成有效热导率不同; 纤维热导率远大于基体热导率时, 纤维随机分布造成纤维偏聚, 部分纤维接触形成"热流通道", 使得有效热导率增大, 揭示了某一体积分数下有效热导率急剧增加是由"热流通道"贯通引起。与实验结果的比较说明了微结构随机性研究的必要性和本文工作的实用价值。

A random microstructure cell model was developed to predict the effective transverse thermal conductivity of unidirectional fiber reinforced composites. The minimization of the model that can well characterize the macroscopic effective properties was investigated, and the influence mechanism of microstructures on macroscopic effective thermal conduction properties was discussed. It is shown that convergence and computational efficiency are much improved by prescribing the periodic boundary conditions for the model together with replacing the result by a large model with the average of the results by several appropriate small models. The maximum relative variation of effective thermal conductivities is only 0.6% with the model scale ranging from 10?10 to 30?30. Different fiber distributions lead to different lengths of heat flux path with a high thermal resistance, and then result in different effective thermal conductivities. For a random fiber distribution, fibers segregate in a microscopic level. When the fiber thermal conductivity is much larger than that of the matrix, portions of the fibers come into contact and form some local "heat flow channels", which result in a higher effective thermal conductivity. At a certain fiber volume fraction, the effective thermal conductivity increases dramatically because some of the local "heat flow channels" connect and form channels across the entire composite. A comparison with experimental data demonstrates the necessity of the study on microstructural randomness and the practical value of the present work.

参考文献

[1] 陈富利,蒋持平.含非均匀界面相纤维增强复合材料热传导性能预测的递推公式[J].复合材料学报,2009,26(4):151-155.
[2] Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium [J].PhilMag, 1892, 34: 481-507.
[3] Springer G S, Tsai S W. Thermal conductivities of unidirectional materials [J]. Journal of Composite Materials, 1967, 1(2): 166-173.
[4] McPhedran R C, McKenzie D R. The conductivity of lattices of spheres I. The simple cubic lattices [J]. Proceedings of the Royal Society London A, 1978, 359: 45-63.
[5] Chamis C C. Simplified composite micromechanics equations for hygral, thermal, and mechanical properties [J]. Society for the Advancement of Material and Process Engineering Quarterly, 1984, 15(3): 14-23.
[6] Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interracial thermal barrier resistance [J]. Journal of Composites Materials, 1987, 21(2): 508-515.
[7] Maxwell C. Electricity and magnetism [M]. 2nd Edition. Oxford, British: Clarendon Press, 1981.
[8] 严鹏,蒋持平.考虑周期微结构分布特征Mori-Tanaka方法[J].复合材料学报,2007,24(4):178-184.
[9] Everett R K, Chu J H. Modeling of non- uniform composite microstructures [J].Journal of Composite Materials, 1993, 27(11): 1128-1144.
[10] Pitchumani R. Evaluation of thermal conductivities of disordered composite media using a fractal model [J].J Heat Transfer, 1999, 121(1): 163-167.
[11] Yi Y B. The role of interparticle contact in conductive properties of random particulate materials[J]. Acta Materialia, 2008, 56(12): 2810-2818.
[12] Huang Y. Effects of fiber arrangement on mechanical behavior of unidirectional composites[J]. Journal of Composite Materials, 2008, 42(18): 1851-1871.
[13] 田志红,范华乐,张浩,等.AIN填充有机灌封硅胶导热性能的数值模拟[J].复合材料学报,2011,28(3):217-222.
[14] 邵雪娇,康国政,郭素娟,张娟.颗粒性态的随机性对SiCp/6061A1复合材料棘轮行为影响的有限元分析[J].复合材料学报,2010,27(3):128-133.
[15] Ganapathy D, Singh K, Phelan P E. An effective unit cell approach to compute the thermal conductivity of composites with cylindrical particles [J]. Journal of Heat Transfer, 2005, 127: 553-559.
[16] Wang Moran, Pan Ning. Predictions of effective physical properties of complex multiphase materials[J]. Materials Science and Engineering, 2008, 63(1): 1-30.
[17] 沈阳材料科学国家(联合)实验室先进炭材料研究部.碳素知识[EB/OL].[2011-9-21].http://carbon.imr.ac.cn/carbonknowledge/C-Tanxianwei.html.
[18] 杨世铭,陶文铨.传热学[M].第4版.北京:高等教育出版社,2006:35-45.
[19] Xia Zihui, Zhou Chuwei, Yong Qiaoling, Wang Xinwei. A unified periodical boundary conditions for representative volume elements of composites and applications [ J ]. International Journal of Solids and Structures, 2006, 43 (2): 266-278.
[20] Zhang H, Onn D G, Bolt J D. Ceramic fiber composites for electronic packaging [ J ]. Thermal Transport Properties, 1989, 167: 187-192.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%