通过合理配置成分及优化工艺参数,用铜模吸铸法成功制备出具有室温超塑性变形能力的(Zr72Cu16.5Ni11.5)(90)Al(10)大块非晶合金,并对其塑变效应进行研究,结果表明,在4.2×10-4-6.0×10-5s(-1)应变速率范围内合金试样均呈现出室温超塑性,即经历85.5%工程应变或193.1%真应变仍无脆断迹象;抗压强度、弹性模量、塑性应变、应力峰间隔、剪切带滑移间隔等随应变速率减小而增大,而弹性应变则下降;应变速率越小,应力-应变曲线上锯齿状特性越明显,合金侧面剪切带密集度越高;屈服后,工程应力-应变曲线上的表象加工硬化越来越明显,真应力一应变曲线上则表现为明显的加工软化特征;超塑性变形后合金各微观区域剪切带传递呈现不同的形貌特征,绝大部分偏离了理想位置.
参考文献
[1] | 汪卫华.非晶合金塑性研究的新进展[J].自然杂志,2006(06):348. |
[2] | A. Inoue;B.L. Shen;A.R. Yavari .Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si systems[J].Journal of Materials Research,2003(6):1487-1492. |
[3] | Y.-K. Xu;H. Ma;J. Xu .Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J].Acta materialia,2005(6):1857-1866. |
[4] | Sun Y F;Wei B C;Wang Y R et al.[J].Applied Physics Letters,2005,87(05):0519051-0519053. |
[5] | wada T;Inoue A;Greer A L .[J].Applied Physics Letters,2005,86(25):2519071-2519073. |
[6] | Zhang Y;Wang W H;Greer A L .[J].Nature Materials,2006,5:857-860. |
[7] | Yao K F;Zhang C Q .[J].Applied Physics Letters,2007,90(06):619011一619013. |
[8] | Liu YH;Wang G;Wang RJ;Zhao DQ;Pan MX;Wang WH .Super plastic bulk metallic glasses at room temperature[J].Science,2007(5817):1385-1388. |
[9] | Tao P J;Yang Y Z;Bai X J et al.[J].Chinese Science Bulletin,2008,53(03):465-468. |
[10] | Tao PJ;Yang YZ;Bai XJ;Xie ZW;Chen XC;Dong ZJ;Wen JG;Long HJ .Zr-based bulk metallic glass with super-plasticity under uniaxial compression at room temperature[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2008(31):3742-3746. |
[11] | Misra D K;Sohn S W;Kim W T et al.[J].Intermetallics,2009,17(1-2):11-16. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%