采用超音速火焰喷涂+大气等离子喷涂工艺,在K403高温合金表面制备不同层厚比的NiCrAlY/纳米7YSZ热障涂层,研究了涂层厚度变化对热障涂层表面粗糙度、结合强度、热震性能和热循环寿命的影响规律.结果表明:当粘结层厚度一定时,随着陶瓷层厚度的增加,其表面粗糙度增加,涂层结合强度下降;当粘结层厚度为50 μm时,热障涂层的抗热震性能随陶瓷层厚度增加而降低,粘结层厚度提高至100 μm时,热障涂层的抗热震性能随陶瓷层厚度增加先提高,后降低,热障涂层在1100℃的热循环寿命测试结果也基本对应这一规律;当粘结层厚50μm且陶瓷层/粘结层的层厚比在(1~2)∶1的范围内,或者粘结层厚100 μm且陶瓷层/粘结层的层厚比在(2~2.5)∶1范围内时,热障涂层具有较优异的性能.
参考文献
[1] | MEIER S M;GUPTA D K .The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications[J].Transactions of the ASME,1994,116:250-257. |
[2] | Clarke DR. .Materials selection guidelines for low thermal conductivity thermal barrier coatings[J].Surface & Coatings Technology,2003(0):67-74. |
[3] | David R. Clarke;Simon R. Phillpot .Thermal barrier coating materials[J].Materials Today,2005(6):22-29. |
[4] | Nitin P. Padture;Maurice Gell;Eric H. Jordan .Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,2002(5566):280-284. |
[5] | MURPHYA K S;MORE K L;LANCE M J.As-deposited Mixed Zone in Thermally Grown Oxide Beneath a Thermal Barrier Coating[J].Surface and Coatings Technology,2001(146/147):152-161. |
[6] | P. Y. Hou .Segregation behavior at TGO/bondcoat interfaces[J].Journal of Materials Science,2009(7):1711-1725. |
[7] | Balint DS;Xu T;Hutchinson JW;Evans AG .Influence of bond coat thickness on the cyclic rumpling of thermally grown oxides[J].Acta materialia,2006(7):1815-1820. |
[8] | TAYLOR T A;APPLEBY D L;WEATHERILL A E.Plasma Sprayed Yttria Stabilized Zirconia Coatings:Structure Property Relationships[J].Surface and Coatings Technology,1990(43/44):470-480. |
[9] | Choi HM.;Choi WK.;Choi DG.;Choi SK.;Kim JC.;Park YK.;Kim GM.;Kang BS. .Effect of the thickness of plasma-sprayed coating on bond strength and thermal fatigue characteristics[J].Journal of Materials Science,1998(24):5895-5899. |
[10] | AHRENS M;LAMPENSCHERF S;VASSEN R et al.Sintering and Creep Processes in Plasma-sprayed Thermal Barrier Coatings[J].Journal of Thermal Spray Technology,2004,13(03):432-442. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%