人工神经网络因能处理复杂的非线性问题而成为材料科学研究的一种重要方法.在介绍BP神经网络的基础上,综述了其在复合材料设计、工艺优化、性能预测、损伤检测及预测等方面的应用情况,分析了应用中存在的问题,展望了其发展趋势.
Artificial neural networks(ANN) is an important method for materials science research owing to its advantage on dealing with complicated non-linear problems. BP neural networks(BPNN) is introduced in brief. Its applications in composites research, such as composites design, process optimization, properties prediction, damage prediction and failure detection and so on are reviewed. The existing problems in applications are analyzed and the application prospect of BPNN is described, respectively.
参考文献
[1] | 顾正彬,李贺军,李克智,李爱军.人工神经网络在复合材料研究中的应用[J].宇航计测技术,2003(04):13-18. |
[2] | Hany El Kadi .Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks-A review[J].Composite structures,2006(1):1-23. |
[3] | 焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996 |
[4] | 吴简彤;王建华.神经网络技术及其应用[M].哈尔滨:哈尔滨工程大学出版社,1998 |
[5] | Milan Keser;Samuel I. Stupp .Genetic algorithms in computational materials science and engineering: simulation and design of self-assembling materials[J].Computer Methods in Applied Mechanics and Engineering,2000(2/4):373-385. |
[6] | Kasperkiewicz J.; .The applications of ANNs in certain materials-analysis problems[J].Journal of Materials Processing Technology,2000(1/3):74-79. |
[7] | Z. Zhang;K. Friedrich .Artificial neural networks applied to polymer composites: a review[J].Composites science and technology,2003(14):2029-2044. |
[8] | 张蕾,黄传真,何林,方斌,李兆前,艾兴.人工神经网络在Al2O3-TiC复合陶瓷设计中的应用[J].机械工程材料,2002(11):7-9. |
[9] | 人工神经网络在o′-Sialon-BN复合材料设计中的应用[J].北京科技大学学报,1999(02):171. |
[10] | 陈强,李贺军,李爱军,孙国岭,李克智.人工神经网络建模在抗烧蚀炭/炭复合材料基体改性研究中的应用[J].新型炭材料,2004(04):275-280. |
[11] | 徐强,张幸红,赫晓东,韩杰才,王雪峰.TiB2-Cu复合材料SHS工艺的人工神经网络优化[J].哈尔滨工业大学学报,2003(10):1199-1201. |
[12] | Li AJ;Li H J;Li K Z et al.Applications of neural networks and genetic algorithms to CVI process in carbon/carbon composites[J].Acta Materialia,2004,52(02):299. |
[13] | 顾正彬,李贺军,李克智,李爱军.C/C复合材料等温CVI工艺模糊神经网络建模[J].稀有金属材料与工程,2004(10):1037-1040. |
[14] | 徐志淮,李贺军,姜开宇.神经网络模型在SiC涂层制备中的应用[J].无机材料学报,2000(03):509-515. |
[15] | Corni I.Application of a neural network approach to the electrophoretic deposition of PEEK-alumina composite coatings[J].Materials Research Bulletin |
[16] | Qingeng Zeng;Jiakui Zu;Litong Zhang .Designing expert system with artificial neural networks for in situ toughened Si_3N_4[J].Materials & Design,2002(3):287-290. |
[17] | Cherian R P;Smith L N;Midha P S .A neural network approach for selection of powder metallurgy materials and process parameters[J].Art Int Eng,2000,14(01):39. |
[18] | 顾震隆 .复合材料的发展现状及我国复合材料面临的问题[J].力学与实践,1998,23(02):23. |
[19] | 乔英杰,尹海莲,梁军.基于人工神经网络的碳/陶瓷复合材料性能预测[J].东南大学学报(自然科学版),2005(03):400-403. |
[20] | Koker R;Altinkok N;Demir A .Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms[J].Materials & Design,2007,28(02):616. |
[21] | Altinkok N;Koker R .Modeling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks[J].Materials & Design,2006,27(08):625. |
[22] | Necat Altinkok;Rasit Koker .Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al-Si-Mg)-aluminium matrix composites[J].Materials & Design,2004(7):595-602. |
[23] | Seyhan AT;Tayfur G;Karakurt M;Tanoglu M .Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites[J].Computational Materials Science,2005(1):99-105. |
[24] | Rami H A;Kim H K .Nonlinear constitutive model for FRP composites using artificial neural networks[J].Mechan Mater,2007,39(12):1035. |
[25] | Bezerra EM;Ancelotti AC;Pardini LC;Rocco JAFF;Iha K;Ribeiro CHC .Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: Analysis of the shear mechanical properties[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):177-185. |
[26] | Yousef A A;Kadi H E .Fatigue life prediction of unidirectional glass fiber/epoxy composite laminate using neural networks[J].Computers & Structures,2001,53(01):65. |
[27] | Lee J.A.;Almond D.P. .The use of neural networks for the prediction of fatigue lives of composite materials[J].Composites, Part A. Applied science and manufacturing,1999(10):1159-1169. |
[28] | Abderrezak Bezazi;S. Gareth Pierce;Keith Worden .Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network[J].International Journal of Fatigue,2007(4):738-747. |
[29] | A.P. Vassilopoulos;E.F. Georgopoulos;V. Dionysopoulos .Artificial neural networks in spectrum fatigue life prediction of composite materials[J].International Journal of Fatigue,2007(1):20-29. |
[30] | Hayajneh M;Hassan A M;Alrashdan A .Prediction of tribological behavior of aluminum-copper based composite using artificial network[J].Journal of Alloys and Compounds,2009,470(1-2):584. |
[31] | Rashed F S;Mahmoud T S .Prediction of wear behaviour of A356/SiCp MMCs using neural networks[J].Tribology International,2009,42(05):642. |
[32] | K. Velten;R. Reinicke;K. Friedrich .Wear volume prediction with artificial neural networks[J].Tribology International,2000(10):731-736. |
[33] | Zhang Z;Friedrich K;Velten K .Prediction on tribological properties of short fibre composites using artificial neural networks[J].Wear,2002,252(7-8):668. |
[34] | Valoor M.T;Chandrashekhara K. .A thick composite-beam model for delamination prediction by the use of neural networks[J].Composites science and technology,2000(9):1773-1779. |
[35] | Chakraborty D .Artificial neural network based delamination prediction in laminated composites[J].Materials & Design,2005,26(01):1. |
[36] | 王宏涛,刘利锋,周来水,郑世杰.基于模态分析和BP神经网络的复合材料脱层损伤监测研究[J].中国机械工程,2005(03):239-242,248. |
[37] | Luo H;Hangud S .Dynamic learning rate neural network training and composite structural damage detection[J].AIAA Journal,1997,35:1527. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%