欢迎登录材料期刊网

材料期刊网

高级检索

研究了在放电等离子烧结(SPS)条件下,纳米碳化钒(V_8C_7)对超细WC基硬质合金的相组成、微观组织及性能的影响.结果表明:超细WC基硬质合金主要由WC和Co_3C两相组成,相对于未烧结的硬质合金材料,WC的衍射峰向小角度方向偏移;纳米碳化钒可以有效抑制超细WC基硬质合金中WC晶粒的长大,并且随着纳米碳化钒比表面积的增大而增强,添加比表面积为63.36m~2/g的纳米V_8C_7后,硬质合金中大部分WC的晶粒尺寸<0.5μm;纳米碳化钒对超细WC基硬质合金的性能具有重要影响,并且随着纳米碳化钒比表面积的增大而增加,添加比表面积为63.36m~2/g的纳米V_8C_7后,超细WC基硬质合金具有较高的性能(相对密度99.7%,洛氏硬度93.4,断裂韧性12.7MPa·m~(1/2)).

Effects of vanadium carbide nanopowders(V_8C_7) on the phase compositions,microstructures and properties of ultrafine WC-based cemented carbides were investigated under spark plasma sintering(SPS) conditions.The results show that ultrafine WC-based cemented carbides mainly consists of WC and Co_3C phases,and the diffraction peaks of WC shift towards small angle compared with unsintered material.Vanadium carbide nanopowders can effectively inhibit the WC grain growth in ultrafine WC-based cemented carbides,and the inhibition action increases with increasing specific surface area of V_8C_7 nanopowders.The majority of the grain sizes WC are less than 0.5μm when ultrafine WC-based cemented carbide was added to V_8C_7 nanopowders with the specific surface area of 63.36m~2/g.Vanadium carbide nanopowders have important effects on the properties of ultrafine WC-based cemented carbides,which increase with increasing specific surface area.Ultrafine WC-based cemented carbide has higher properties(relative density 99.5%,HRA 93.2 and K_(IC) 12.5MPa·m~(1/2)) when it is added to V_8C_7 nanopowders with the specific surface area of 63.36m~2/g.

参考文献

[1] Huang S G;Li L;Vanmeensel K et al.[J].International Journal of Refractory Metals and Hard Materials,2007,25(5-6):417-422.
[2] Spriggs G E .[J].International Journal of Refractory Metals and Hard Materials,1995,13(05):241-255.
[3] Hashe N G;Neethling J H;Berndt P R et al.[J].International Journal of Refractory Metals and Hard Materials,2007,25(03):207-213.
[4] Sun L;Jia C C;Xian M .[J].International Journal of Refractory Metals and Hard Materials,2007,25(02):121-124.
[5] Da Silva A G P;De Souza C P;Gomes U U et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,293(1-2):242-246.
[6] Zhang F M;Shen J;Sun J F .[J].Journal of Alloys and Compounds,2004,385(1-2):96-103.
[7] Rodiger K;Dreyer K;Gerdes T et al.[J].International Journal of Refractory Metals and Hard Materials,1998,16(4-6):409-416.
[8] Jianfei Sun;Faming Zhang;Jun Shen .Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets[J].Materials Letters,2003(21):3140-3148.
[9] Cha SI.;Hong SH.;Kim BK. .Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):31-38.
[10] Omori M .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,287(02):183-188.
[11] Yu LG;Khor KA;Li H;Pay KC;Yip TH;Cheang P .Restoring WC in plasma sprayed WC-Co coatings through spark plasma sintering (SPS)[J].Surface & Coatings Technology,2004(2/3):308-317.
[12] Huang B;Chen L D;Bai S Q .[J].Scripta Materialia,2006,54(03):441-445.
[13] 赵志伟,刘颖,曹泓,高升吉,涂铭旌.前驱体碳热还原法制备纳米V8C7粉末[J].稀有金属材料与工程,2007(z3):104-107.
[14] 马淳安,褚有群,黄辉,成旦红,周邦新.WC-Co硬质合金的相组成及其相变[J].浙江工业大学学报,2003(01):1-6.
[15] Sadangi R K;McCandish L E;Kear B H et al.[J].Advances in Powder Metallurgy and Particulate Materials,1998,13(01):51-59.
[16] 张法明,沈军,孙剑飞,郭舒.纳米WC-Co硬质合金的微观组织特征[J].有色金属,2005(01):4-7,15.
[17] 史晓亮,段隆臣,汤凤林,杨凯华.提高金刚石-硬质合金超硬复合体性能的研究[J].探矿工程-岩土钻掘工程,2002(02):53-56.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%