研究了在放电等离子烧结(SPS)条件下,纳米碳化钒(V_8C_7)对超细WC基硬质合金的相组成、微观组织及性能的影响.结果表明:超细WC基硬质合金主要由WC和Co_3C两相组成,相对于未烧结的硬质合金材料,WC的衍射峰向小角度方向偏移;纳米碳化钒可以有效抑制超细WC基硬质合金中WC晶粒的长大,并且随着纳米碳化钒比表面积的增大而增强,添加比表面积为63.36m~2/g的纳米V_8C_7后,硬质合金中大部分WC的晶粒尺寸<0.5μm;纳米碳化钒对超细WC基硬质合金的性能具有重要影响,并且随着纳米碳化钒比表面积的增大而增加,添加比表面积为63.36m~2/g的纳米V_8C_7后,超细WC基硬质合金具有较高的性能(相对密度99.7%,洛氏硬度93.4,断裂韧性12.7MPa·m~(1/2)).
Effects of vanadium carbide nanopowders(V_8C_7) on the phase compositions,microstructures and properties of ultrafine WC-based cemented carbides were investigated under spark plasma sintering(SPS) conditions.The results show that ultrafine WC-based cemented carbides mainly consists of WC and Co_3C phases,and the diffraction peaks of WC shift towards small angle compared with unsintered material.Vanadium carbide nanopowders can effectively inhibit the WC grain growth in ultrafine WC-based cemented carbides,and the inhibition action increases with increasing specific surface area of V_8C_7 nanopowders.The majority of the grain sizes WC are less than 0.5μm when ultrafine WC-based cemented carbide was added to V_8C_7 nanopowders with the specific surface area of 63.36m~2/g.Vanadium carbide nanopowders have important effects on the properties of ultrafine WC-based cemented carbides,which increase with increasing specific surface area.Ultrafine WC-based cemented carbide has higher properties(relative density 99.5%,HRA 93.2 and K_(IC) 12.5MPa·m~(1/2)) when it is added to V_8C_7 nanopowders with the specific surface area of 63.36m~2/g.
参考文献
[1] | Huang S G;Li L;Vanmeensel K et al.[J].International Journal of Refractory Metals and Hard Materials,2007,25(5-6):417-422. |
[2] | Spriggs G E .[J].International Journal of Refractory Metals and Hard Materials,1995,13(05):241-255. |
[3] | Hashe N G;Neethling J H;Berndt P R et al.[J].International Journal of Refractory Metals and Hard Materials,2007,25(03):207-213. |
[4] | Sun L;Jia C C;Xian M .[J].International Journal of Refractory Metals and Hard Materials,2007,25(02):121-124. |
[5] | Da Silva A G P;De Souza C P;Gomes U U et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,293(1-2):242-246. |
[6] | Zhang F M;Shen J;Sun J F .[J].Journal of Alloys and Compounds,2004,385(1-2):96-103. |
[7] | Rodiger K;Dreyer K;Gerdes T et al.[J].International Journal of Refractory Metals and Hard Materials,1998,16(4-6):409-416. |
[8] | Jianfei Sun;Faming Zhang;Jun Shen .Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets[J].Materials Letters,2003(21):3140-3148. |
[9] | Cha SI.;Hong SH.;Kim BK. .Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):31-38. |
[10] | Omori M .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,287(02):183-188. |
[11] | Yu LG;Khor KA;Li H;Pay KC;Yip TH;Cheang P .Restoring WC in plasma sprayed WC-Co coatings through spark plasma sintering (SPS)[J].Surface & Coatings Technology,2004(2/3):308-317. |
[12] | Huang B;Chen L D;Bai S Q .[J].Scripta Materialia,2006,54(03):441-445. |
[13] | 赵志伟,刘颖,曹泓,高升吉,涂铭旌.前驱体碳热还原法制备纳米V8C7粉末[J].稀有金属材料与工程,2007(z3):104-107. |
[14] | 马淳安,褚有群,黄辉,成旦红,周邦新.WC-Co硬质合金的相组成及其相变[J].浙江工业大学学报,2003(01):1-6. |
[15] | Sadangi R K;McCandish L E;Kear B H et al.[J].Advances in Powder Metallurgy and Particulate Materials,1998,13(01):51-59. |
[16] | 张法明,沈军,孙剑飞,郭舒.纳米WC-Co硬质合金的微观组织特征[J].有色金属,2005(01):4-7,15. |
[17] | 史晓亮,段隆臣,汤凤林,杨凯华.提高金刚石-硬质合金超硬复合体性能的研究[J].探矿工程-岩土钻掘工程,2002(02):53-56. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%