欢迎登录材料期刊网

材料期刊网

高级检索

Integrally directional solidification of an Nb-Ti-Si based ultrahigh temperature alloy was performed in an ultrahigh temperature and high thermal gradient furnace with the use of ceramic crucibles. The microstructural evolution with the withdrawing rate increasing during directional solidification was revealed. The integrally directionally solidified microstructure was composed of couple grown lamellar (Nb_(ss)+(Nb,X)_5Si_3) eutectic colonies and a few hexagonally cross-sectioned (Nb,X)_5Si_3 columns (X represents Ti and Hf elements). All the directionally solidified microstructure was straightly aligned along the longitudinal axis of the specimens. With increasing of the withdrawing rate, the average diameter of the eutectic cells and inter lamella spacings in the eutectic cell decreased. The near-planar solid/liquid interface appeared when the withdrawing rate was 1μm/s, and the cellular solid/liquid interface formed when the withdrawing rate was 5 μm/s.

参考文献

[1] Guo X P;Gao L M;Guan P et al.[J].Materials Science Forum,2007,539-543:3690.
[2] Yang Y;Bewlay B P;Chang Y A .[J].Journal of Phase Equilibria and Diffusion,2007,28(01):107.
[3] Guan P;Guo X P;Ding X et al.[J].ACTA METALLURGICA SINICA,2004,17(04):450.
[4] Bewlay B P;Jackson M R;Lipsitt H A .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27A:3801.
[5] Kim J H;Tabaru T;Hirai H et al.[J].Scripta Materialia,2003,48:1439.
[6] Geng J;Tsakiropoulos P .[J].INTERMETALLICS,2007,15:382.
[7] Kurz W;Fisher J D.Fundamentals of Solidification[M].Uetikon-Zuerich:Trans Tech Public,1992
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%