采用硅橡胶(110型)与金属(Ni粉)按质量比1:2配料,经过特殊的制备工艺,合成金属Ni/硅橡胶高分子复合材料.分别测量样品的压敏效应和介电特性.结果表明:在不同应力作用下,样品的电阻从1×1012Q降到10 Ω,其变化范围为11个数量级;在恒应力作用下,样品的电阻随时间的增加而减小,表现出"电阻蠕动"现象;室温下,样品的电容和介电损耗都随频率的增加而减小,随应力的增加而增大,其原因是在样品中形成了以高分子为绝缘层、金属Ni粉为导电填料的相互隔离且平行的超电容网络微观结构.在外力作用下,这种微观结构中每一个电容单元的间距逐渐减小而电容逐渐增大,致使样品的电容有大幅度增加;介电损耗是由于样品的电阻率减小,电导增大,使部分电能转化为热能.
参考文献
[1] | 熊传溪,闻荻江.聚合物基导电复合材料的导电机理[J].玻璃钢/复合材料,1998(5):36-42.Xiong Chuanxi,Wen Dijiang.The electric conductivity mechanism of polymer composites filled with carbon black metal[J].Fiber Reinforced Plastics/Composites,1998 (5),36-42. |
[2] | 汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(2);1-7.Tang Hap,Chen Xinfang,Luo Yunxia.Conductivity mechanism study and electrical resistivity calculation of carbon black filed polymers[J].Polymeric Materials Science and Engineering,1996,12(2):1-7. |
[3] | 贾向明,杨其,李光宪,姜苏俊.填充型导电高分子复合材料的逾渗理论进展[J].中国塑料,2003,17(6):9-14.Jia Xiangming,Yang Qi,Li Guangxian,Jiang Sujun.Progress of percolation threshold theory for conductive polymer composites filled by particles[J].China Plastics,2003,17(6):9-14. |
[4] | Mamunya Y P,Davydenko V V,Pissis E V.Electrical and thermal conductivity of polymers filled with metal powders[J].European Polymer Journal,2002,38(13):1887-1897. |
[5] | Thongruang W,Richard J,Spontak (3.Bridged double percolation in conductive polymer composites:An electrical conductivity,morphology and mechanical property study[J].Polymer,2002,43(3):3717-3725. |
[6] | 郑裕,董小武.炭黑/聚乙烯复合导电材料的性能研究[J].中国塑料,2000,14(12):22-27.Zheng Yu,Doug Xiaowu.Study on property of carbon black/polyethylene conductive composites[J].China Plastics,2000,14(12):22-27. |
[7] | Jiang C,Gilbert M,Hitt D J.Preparation of nickel coated mica as a conductive filler[JS.Composites,2002,33(5):745-751. |
[8] | Bloor D,Graham A,Williams E J.Metal/polymer composite with nanostructured filler particles and amplified physical properties[J].Applied Physics Letters,2006,88:102-103. |
[9] | 李大军,严长浩,鲁萍,周岚,吴德峰,张明.膨胀石墨/聚酯导电复合材料的制备与导电行为[J].复合材料学报,2008,25(1),35-39.Li Dajun,Yan Changhao,Lu Ping,Zhou Lan,Wu Defeng,Zhang Ming.Preparation and conductive behavior of expanded graphite/poly-(ethylene terephthalate) conductive composites[J].Acta Materiae Compositae Sinica,2008,25(1):35-39. |
[10] | 杨永芳,刘敏江.导电高分子材料的应用和进展[J].广州化学,2002,27(4):57-60.Yang Yongfang,Liu Minjiang.Study and application of conducting polymer[J].Guangzhou Chemistry,2002,27(4) 57-60. |
[11] | 李郁忠,叶林,魏海宾,等.导电复合材料在航空工业中的应用[J].高分子材料与工程,1998,14(1):136-138.Li Yuzhong,Ye Lin,Wei Haibin,et al.Application of conducting carbon polymer composite in aeronautic industry[J].Polymeric Materials Science and Engineering,1998,14(1):136-138. |
[12] | Das N C,Chaki T K,Khastgir D.Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers[J].J Appl Polym Sci,2001,80:1601-1605. |
[13] | Novak I,Krupa L.Electro-conductive resins filled with graphite for casting applications[J].European Polymer Journal,2004,40(12):1417-1422. |
[14] | 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.Du Shanyi.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica,2007,24(1):1-12. |
[15] | Hung C C.Heater made from graphite composite material for potential deicing application[J].Journal of Aircraft,1987,24(10):725-730. |
[16] | Alexander N,Svetlichnyi V M,Rentzsch R.High conductivity and supercurrent in superconductor-polymersuperconductor systems[J].Physica B,2005,359/361:506-508. |
[17] | 魏志刚,汤文成.复合材料网格结构模态分析的均匀化等效建模[J].复合材料学报,2008,25(2):188-193.Wei Zhigang,Tang Weucheng.Homogenization modeling of composite lattice structure[J].Acta Materiae Cumpositae Sinica,2008,25(2):188-193. |
[18] | Bloorl D,Donnelly K,Handsl P J,Laughlin P,Lussey D.A metal/polymer composite with unusual properties[J].J Phys D:Appl Phys,2005,38:2851-2860. |
[19] | 宋修宫,王继辉,高国强.RTM工艺中树脂同化温度与介电性能[J].复合材料学报,2007,24(1):18-21.Song Xiugong,Wang Jihui,Gap Guoqiang.Temperature and dielectric property of resin during RTM process[J].Acta Materiae Compositae Sinica,2007,24(1):18-21. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%