采用力学性能测试、时效处理、电化学测试、显微硬度以及TEM微观分析等分析手段,研究了19Cr-1.6Mo和19Cr-1.6Mo-0.5Cu两种超纯铁素体不锈钢的力学性能和在3.5% NaCl腐蚀介质中的耐腐蚀性能.试验结果表明:合金元素铜的添加,提高了试验用钢的强度,同时降低了△r值;随着时效时间的增加,铜析出相尺寸在不断的增加且均匀分布,基体的显微硬度由HV148增加到HV162;合金元素铜的添加降低了试验用钢在氯离子溶液下的耐点蚀能力,尤其是随着时效时间的增加,点蚀电位值由390mV降低到290 mV,耐点蚀能力呈明显的下降趋势.
参考文献
[1] | 孙珍宝.合金钢手册 上册[M].北京:冶金工业出版社,1984 |
[2] | Thompson S W;Colvin D J;Krauss G .Austenitic Decomposition During Continuous Cooling of an HSLA-80 Plate Steel[J].Metallurgical and Materials Transactions,1996,27A(06):1557. |
[3] | 李少兵,张俊旭.铜在高强度合金钢及焊缝金属中的作用[J].材料开发与应用,2001(06):39-42. |
[4] | 易炜发,朱定一,杨泽斌,林淑梅.铜含量对高碳TWIP钢组织和力学性能的影响[J].钢铁,2011(11):71-76. |
[5] | 杨才福,张永权.铜含量对低碳HSLA钢力学性能的影响[J].特殊钢,1999(01):27-30. |
[6] | SHI F;WANG L J;CUI W F.Precipitation Behavior of M2N in a High-Nitrogen Austenitic Stainless Steel During Isothermal Aging[J].Acta Metallurbica Sinica,2007(20):95. |
[7] | Lee T H;Oh C S;Lee C G.Precipitation of o-Phase in High-Nitrogen Austenitic 18Cr-18Mn-2Mo-0.gN Stainless Steel During Isothermal Aging[J].Scripta Materialia,2004(50):1325. |
[8] | Ujiro T;Satoh S;Staehle R W.Effect of Alloying Cu on the Corrosion Resistance of Stainless Steels in Chloride Media[J].Corrosion Science,2001(43):2185. |
[9] | Banas J;Mazurkiewicz A.The Effect of Copper on Passivity and Corrosion Behaviour of Ferritic-Austenitic Stainless Steels[J].Materials Science and Engineering,2000(277):183. |
[10] | Pardo A;Merino M C;Carboneras M.Pitting Corrosion Behaviour of Austenitic Steels With Cu and Sn Additions[J].Corrosion Science,2007(49):510. |
[11] | Sourisseau T;Chauveau E;Baroux B.Mechanism of Copper Action on Pitting Phenomena Observed on Stainless Steels in Chloride Mrdia[J].Corrosion Science,2005(47):1097. |
[12] | Miglin M T.Metallurgical Transactions[M].Warrendale:The Minerals,Metals and Materials Society,1986 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%