欢迎登录材料期刊网

材料期刊网

高级检索

选用A、B两种不同粒度的W粉,调节A、B钨粉的比例,并与Cu粉直接混合,配制成W/Cu20(质量分数%,下同)混合粉末,经热压制备了近全致密的W-Cu复合材料.显微组织观察表明,随着小粒度W粉配比的增加,大W颗粒形成的孔隙逐渐减少,而小W颗粒形成的孔隙逐渐增加.当W粒度配比为80%A+20%B时,形成较为致密的堆积结构.在合适的工艺条件下(烧结温度1060 ℃、压力85 MPa、保温3 h),所制备的W/Cu20复合材料其相对密度达到98.6%,Cu相沿大W颗粒和小W颗粒的边界呈现网状分布.

In order to fabricate highly dense W/Cu20 (mass fraction, similarly hereinafter) composite materials, two kinds of tungsten powder with different particle size, A and B, were used. The W powder with different ratios of A and B were directly mixed with copper powder and W/Cu20 mixed powder was obtained. Almost fully dense W-Cu composite materials were fabricated by solid-state hot pressing. The observation of microstructure shows that with increasing of the fine W powder (B) content, the pores formed by the coarse W powder (A) decrease and the pores by the fine W powder increase gradually. Rather dense microstructure is obtained when the W particle distribution is 80%A+20%B. The W/Cu20 with 98.6% relative density is obtained under the processing conditions of sintering temperature of 1060 °C, pressure of 85 MPa and holding time of 3 h. Copper forms into a network structure around the coarse W particles and the fine W particles.

参考文献

[1] Yoon E S;Lee J S;Oh S T et al.[J].Refractory Metal and Hard Materials,2002,20:201.
[2] Kim Y D;Oh N L;Oh S T et al.[J].Materials Letters,2001,51:420.
[3] Johnson J L;German R M .[J].Advances in Powder Metallurgy and Particulate Materials,1993,4:201.
[4] Lee J S;Kim T H.[J].Nanostructured Materials,1995(06):691.
[5] German R M .[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1997,24A:1745.
[6] S.-B. LI;J.-X. XIE .Processing and microstructure of functionally graded W Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders[J].Composites science and technology,2006(13):2329-2336.
[7] Li Y P;Qu X H;Zheng Z S.[J].International Journal of Refractory Metals and Hard Materials,2003(21):259.
[8] Raghu T.;Ramakrishnan P.;Mohan TRR.;Sundaresan R. .Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):438-441.
[9] Yand B;German R M .[J].Advances in Powder Metallurgy and Particulate Materials,1993,5:105.
[10] Dore' F;Lay S;Eustathopoulos N.[J].Scripta Materialia,2003(49):237.
[11] Ryu S S;Kim Y D;Moon I H .[J].Alloys and Compounds,2002,335:233.
[12] Kim T H;Yu J H;Lee J S .[J].Nano-Structured Materials,1997,9:213.
[13] Kim J C;Moon I H .[J].Nano-Structured Materials,1998,10(02):283.
[14] Kim D G;Lee K W;Oh S T et al.[J].Materials Letters,2004,58:1199.
[15] Patterson B R;Griffin J A .[J].Modern Developments in Powder Metallurgy,1985,15:279.
[16] Poster S R;Waldo C T;Hausner H H .[J].Progress in Powder Metallurgy,1960,16:56.
[17] Darcovich K.;Bera L.;Shinagawa K. .Particle size distribution effects in an FEM model of sintering porous ceramics[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):247-255.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%