选用A、B两种不同粒度的W粉,调节A、B钨粉的比例,并与Cu粉直接混合,配制成W/Cu20(质量分数%,下同)混合粉末,经热压制备了近全致密的W-Cu复合材料.显微组织观察表明,随着小粒度W粉配比的增加,大W颗粒形成的孔隙逐渐减少,而小W颗粒形成的孔隙逐渐增加.当W粒度配比为80%A+20%B时,形成较为致密的堆积结构.在合适的工艺条件下(烧结温度1060 ℃、压力85 MPa、保温3 h),所制备的W/Cu20复合材料其相对密度达到98.6%,Cu相沿大W颗粒和小W颗粒的边界呈现网状分布.
In order to fabricate highly dense W/Cu20 (mass fraction, similarly hereinafter) composite materials, two kinds of tungsten powder with different particle size, A and B, were used. The W powder with different ratios of A and B were directly mixed with copper powder and W/Cu20 mixed powder was obtained. Almost fully dense W-Cu composite materials were fabricated by solid-state hot pressing. The observation of microstructure shows that with increasing of the fine W powder (B) content, the pores formed by the coarse W powder (A) decrease and the pores by the fine W powder increase gradually. Rather dense microstructure is obtained when the W particle distribution is 80%A+20%B. The W/Cu20 with 98.6% relative density is obtained under the processing conditions of sintering temperature of 1060 °C, pressure of 85 MPa and holding time of 3 h. Copper forms into a network structure around the coarse W particles and the fine W particles.
参考文献
[1] | Yoon E S;Lee J S;Oh S T et al.[J].Refractory Metal and Hard Materials,2002,20:201. |
[2] | Kim Y D;Oh N L;Oh S T et al.[J].Materials Letters,2001,51:420. |
[3] | Johnson J L;German R M .[J].Advances in Powder Metallurgy and Particulate Materials,1993,4:201. |
[4] | Lee J S;Kim T H.[J].Nanostructured Materials,1995(06):691. |
[5] | German R M .[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1997,24A:1745. |
[6] | S.-B. LI;J.-X. XIE .Processing and microstructure of functionally graded W Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders[J].Composites science and technology,2006(13):2329-2336. |
[7] | Li Y P;Qu X H;Zheng Z S.[J].International Journal of Refractory Metals and Hard Materials,2003(21):259. |
[8] | Raghu T.;Ramakrishnan P.;Mohan TRR.;Sundaresan R. .Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):438-441. |
[9] | Yand B;German R M .[J].Advances in Powder Metallurgy and Particulate Materials,1993,5:105. |
[10] | Dore' F;Lay S;Eustathopoulos N.[J].Scripta Materialia,2003(49):237. |
[11] | Ryu S S;Kim Y D;Moon I H .[J].Alloys and Compounds,2002,335:233. |
[12] | Kim T H;Yu J H;Lee J S .[J].Nano-Structured Materials,1997,9:213. |
[13] | Kim J C;Moon I H .[J].Nano-Structured Materials,1998,10(02):283. |
[14] | Kim D G;Lee K W;Oh S T et al.[J].Materials Letters,2004,58:1199. |
[15] | Patterson B R;Griffin J A .[J].Modern Developments in Powder Metallurgy,1985,15:279. |
[16] | Poster S R;Waldo C T;Hausner H H .[J].Progress in Powder Metallurgy,1960,16:56. |
[17] | Darcovich K.;Bera L.;Shinagawa K. .Particle size distribution effects in an FEM model of sintering porous ceramics[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):247-255. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%