欢迎登录材料期刊网

材料期刊网

高级检索

采用提拉法生长出大尺寸(111)铜单晶,晶体尺寸为ф(12~19)mm×85 mm.通过XRD、金相显微分析讨论了铜单晶的晶体结构与生长缺陷,并采用双臂电桥测定(111)铜单晶的电阻率.结果表明:晶体具有(111)取向、强度高,表明晶体取向良好;蚀坑呈典型三角锥形,位错密度在105~106 cm-2之间;在室温下,(111)铜单晶电阻率为1.289×10-8Ω·m.

参考文献

[1] 王立苗,赵北君,朱世富,唐世红,何知宇,肖怀安.垂直布里奇曼法生长铜单晶体的研究[J].人工晶体学报,2009(01):44-47.
[2] Sworn C H;Brown T E .The Growth of Dislocation-free Copper Crystals[J].Journal of Crystal Growth,1972,15:195-203.
[3] Beck A;Phillips K;Perry A J .A horizontal Bridgman Method for Growing Batches of Oriented Copper Single Crystals[J].Journal of Crystal Growth,1972,15:148-149.
[4] Otooni M A .A New Technique for the Preoaration of Copper Single[J].Journal of Crystal Growth,1978,43:391-393.
[5] 刘振亭,李炳,范新会,王鑫,严文,陈建.区熔连铸法制备单晶铜的铸型温度场分布[J].西安工业大学学报,2009(05):447-451.
[6] 许振明,李丽,李建国,傅恒志,周尧和.连续铸造铜单晶的晶体取向与竞争生长[J].人工晶体学报,1999(02):188-192.
[7] Brückner F U;Schwerdtfeger K .Single Crystal Growth with the Czochralski Method involving Rotational Electromagnetic Stirring of the Melt[J].Journal of Crystal Growth,1994,139:351-356.
[8] Zasimchuk I K;Ovsienko D E;Fomin A V .Preparation of Low Dislocation Density and Dislocation-free Zinc and Copper Single Crystals[J].Journal of Crystal Growth,1981,52:376-384.
[9] Al-ourfi M S;Tanner B K .Theoretical Modeling and Czochralski Growth of High Perfection Nickel Single Crystals[J].Journal of Crystal Growth,1990,99:139-144.
[10] Bruckner F U;Schwendfeger K .Single Crystal Growth with the Czochralski Method Involving Rotational Electromagnetic Stirring of the Melt[J].Journal of Crystal Growth,1994,139:351-350.
[11] Tanner B K .The Perfection of Czochralski Grown Copper Single Crystals[J].Journal of Crystal Growth,1972,16:86-87.
[12] 严文,王雪艳,陈建,李巍,范新会.工业铜单晶线材浸蚀蚀坑的研究[J].西安工业大学学报,2007(01):46-51.
[13] Tslvinskii S V;Maslova L A .Rocking Curve Half-width Obtained by Means of a Double X-ray Crystal Spectrometer and Dislocation Density in Single Crystals[J].Materials Science and Engineering,1977,30:147-153.
[14] 连续铸造铜单晶的力学性能和电阻率[J].中国有色金属学报,1999(03):577.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%