采用SEM、XRD、EDS、TEM、室温拉伸测试、硬度测试、摩擦学性能测试等分析手段,研究时效温度和固溶温度对自行研制的QAl9-4-3铝青铜组织和力学性能的影响.结果表明,随着时效温度的降低或固溶温度的升高,原β硬相区的马氏体特征越来越明显;固溶温度的升高还使β硬相区的面积率增大,使合金的抗拉强度和硬度增大,但降低了伸长率.获得的最佳固溶时效工艺为:(910℃,3 h)固溶后水淬+(480℃,1 h)时效后空冷.该状态下,合金中原β硬相区的显微硬度为270HV,其与α软相的面积比为71:29,使合金具有较好的强韧性配合,抗拉强度为887 MPa,硬度为253HBS,伸长率为7.3%,前两种性能分别较其挤压态合金的提高了22%和33%;其摩擦因数仅略高于挤压态合金的,但磨损率较挤压态合金的降低了27%,表现出较好的耐磨性能.
@@@@The effects of solution and aging treatment on the microstructure and mechanical properties of QAl9-4-3 aluminum bronze were investigated by SEM, XRD, EDS, TEM, tensile tests, wear tests, micro-hardness and macro-hardness tests. The results show that with the decrease of aging temperature or the increase of solution temperature, the martensite characteristics of the original β hard region becomes more obviously. The increase of solution temperature also results a higher area rate of the β hard region. Such structural characteristics lead to the increases of tensile strength and hardness, and the decrease of elongation. The best process of solution and aging is as follows:solution at 910℃for 3 h,and then aging at 480℃for 1 h. Under this condition, the micro-hardness of the originalβregion is 270HV,and the area rate ofβtoαis 71:29, making the obdurability of the alloy preferable:tensile strength of 887 MPa, hardness of 253HBS and elongation of 7.3%. The two former properties are 22%and 33%higher than those of the extruded alloy. The friction coefficient is slightly higher than that of the extruded alloy, but the wear rate is 27%lower than that of the extruded alloy, showing good tribology performance.
参考文献
[1] | 张华,张卫文,夏伟,李元元.高强耐磨变形铝青铜的热处理工艺[J].华南理工大学学报(自然科学版),2002(03):91-93. |
[2] | LI Wen-sheng,WANG Zhi-ping,LU Yang,GAO Yong,XU Jian-lin.Preparation, mechanical properties and wear behaviors of novel aluminum bronze for dies[J].中国有色金属学会会刊(英文版),2006(03):607-612. |
[3] | 徐建林,王智平.铝青铜合金的研究与应用进展[J].有色金属,2004(04):51-55. |
[4] | 李文生,王智平,路阳.高强耐磨铝青铜热处理工艺的研究[J].甘肃工业大学学报,2002(02):26-29. |
[5] | Fuxiao Chen;Hejun Li;Junqing Guo;Yongshun Yang .Predictive model of superplastic properties of aluminum bronze andof the superplastic extrusion test[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009(1/2):315-319. |
[6] | Leilei Gao;Xianhua Cheng .Microstructure and mechanical properties of Cu-10%Al-4%Fe alloy produced by equal channel angular extrusion[J].Materials & design,2008(4):904-908. |
[7] | KUDASHOV D V;ZAUTER R;MULLER H R .Spray-formed high-aluminum bronzes[J].Materials Science and Engineering A,2008,477:43-49. |
[8] | JAHANAFROOZ A;HASAN F;LORIMER G W;RIDLEY N .Microstructure development in complex Nickel-Aluminum Bronze[J].Metallurgical Transactions A,1983,14:1952-1956. |
[9] | CHEN Rui-ping,LIANG Ze-qin,ZHANG Wei-wen,ZHANG Da-tong,LUO Zong-qiang,LI Yuan-yuan.Effect of heat treatment on microstructure and properties of hot-extruded nickel-aluminum bronze[J].中国有色金属学会会刊(英文版),2007(06):1254-1258. |
[10] | 李文生,路阳,袁利华,王智平,金玉花,徐建林.新型铝青铜Cu-14Al-X的热处理强化[J].金属热处理,2006(08):71-76. |
[11] | Datong ZHANG,Ruiping CHEN,Weiwen ZHANG,Zongqiang LUO,Yuanyuan LI.Effect of microstructure on the mechanical and corrosion behaviors of a hot-extruded nickel aluminum bronze[J].金属学报(英文版),2010(02):113-120. |
[12] | SUN Yang-shan;LORIMER G W;RIDLEY N .Microstructure and its development in Cu-Al-Ni alloys[J].Metallurgical Transactions A,1990,21:575-581. |
[13] | HASAN F;JAHANAFROOZ A;LORIMER G W;RIDLEY N .The morphology,crystallography and chemistry of phases in as-cast nickel-aluminum bronze[J].Metallurgical Transactions A,1982,13:1337-1342. |
[14] | 周善初.金属热处理[M].长沙:中南大学出版社,2005:192-211. |
[15] | 温诗铸.摩擦学原理[M].北京:清华大学出版社,2002:301-330. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%