稀有金属材料与工程, 2006, 35(3): 391-394.
Cr-Cu-Si金属硅化物合金组织与耐磨性
尹延西 1, , 李安 2, , 张凌云 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了阿莫西林对B-Z振荡反应的影响,结果表明,阿莫西林的加入明显地改变了振荡体系的周期和振幅,即对振荡体系产生扰动,且阿莫西林的浓度分别在1.5×10-5~2.4×10-3mol/L和4.7 × 10-5~4.8×10-3 mol/L范围内与振荡周期改变值Δt和振幅改变值ΔA均呈良好的线性关系,相关系数分别为0.9822和0.9846,同时结合FKN机理,初步探讨了阿莫西林扰动B-Z振荡反应的机理.","authors":[{"authorName":"赖红伟","id":"1536aa5b-988f-4de4-9f4f-cb04c8c239a0","originalAuthorName":"赖红伟"},{"authorName":"曹宏梅","id":"7142084e-9ecb-4be0-993e-5a9dffe3d215","originalAuthorName":"曹宏梅"},{"authorName":"董顺福","id":"25b31bba-613e-4d3a-b689-67d8f9214ac9","originalAuthorName":"董顺福"},{"authorName":"韩丽琴","id":"dc85c601-a8f6-4c2c-88a9-7678e6954596","originalAuthorName":"韩丽琴"},{"authorName":"陆钊","id":"b3ab28c9-ca7e-4046-b3f0-314f35345395","originalAuthorName":"陆钊"},{"authorName":"董树国","id":"b738feb7-922d-479e-ae22-70989a8f8035","originalAuthorName":"董树国"},{"authorName":"贾骐羽","id":"6c5963d3-76a9-4e7d-b715-a3e1f5100e7d","originalAuthorName":"贾骐羽"}],"doi":"10.3724/SP.J.1095.2014.30321","fpage":"361","id":"19bc8124-310c-4c1d-90e1-d59fb3932e70","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"22c50db5-8835-4e48-9263-d5c1cb922fdc","keyword":"阿莫西林","originalKeyword":"阿莫西林"},{"id":"b116476b-21bb-4e6b-b58c-67580570d6f5","keyword":"化学振荡","originalKeyword":"化学振荡"},{"id":"4b151012-07b7-425b-bde2-bb0eeed47d09","keyword":"指纹图谱","originalKeyword":"指纹图谱"},{"id":"ca9b0c2a-b281-4430-9616-0d05e7bbd26f","keyword":"B-Z振荡","originalKeyword":"B-Z振荡"}],"language":"zh","publisherId":"yyhx201403019","title":"阿莫西林对B-Z振荡反应的影响及其振荡指纹图谱","volume":"31","year":"2014"},{"abstractinfo":"通常可采用提高混凝土强度的方式来提高混凝土的抗氯离子渗透性能,但实践证明该方法不一定能达到预期工程目标.本文通过4因素3水平正交试验研究了混凝土强度与氯离子渗透能力之间的关系.选择水胶比、矿物掺合料掺量、胶凝材料总量、石灰石粉占矿物掺合料的比例等4个影响因素,得出以下结果:对于混凝土强度,矿物掺合料是影响最大的因素,而石灰石粉的影响是最小的;但对于混凝土抗氯离子渗透性,石灰石粉掺量是影响最大的因素.石灰石粉掺量增加可降低混凝土强度,但可增加抗混凝土氯离子侵蚀的能力.可通过调整石灰石粉的掺量来增强混凝土抗氯离子侵蚀能力并控制其强度不致过高.存在使混凝土最密实,混凝土抗氯离子渗透性最好的最优石灰石粉掺量.","authors":[{"authorName":"胡瑾","id":"be1a35c7-a04e-4c43-a573-3c9319976974","originalAuthorName":"胡瑾"},{"authorName":"阎培渝","id":"e47cab1b-7610-47fa-af14-12304919892e","originalAuthorName":"阎培渝"},{"authorName":"董树国","id":"a6cba194-752f-4e97-84aa-d4d95f825f03","originalAuthorName":"董树国"},{"authorName":"张国杰","id":"fab8ea98-7c73-49f3-a64c-7a9284c84e3d","originalAuthorName":"张国杰"}],"doi":"","fpage":"913","id":"4a49a213-ae6a-4bd7-9b44-60956f3954c9","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"231eb9ec-04df-48da-a5b3-c6f50e19025e","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"5d834790-09cb-480a-bd13-0a6e5c5a83bd","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"65bc6de1-b6c3-4682-95b9-5419ad5305b5","keyword":"强度","originalKeyword":"强度"},{"id":"3cf7db14-75d4-4a26-a6a0-eab94063dd47","keyword":"抗氯离子渗透性","originalKeyword":"抗氯离子渗透性"}],"language":"zh","publisherId":"gsytb201404041","title":"提高中等强度等级混凝土抗氯离子渗透性能的研究","volume":"33","year":"2014"},{"abstractinfo":"在14篇文献的基础上综述了交联聚乙烯(XLPE)电缆中水树研究现状,介绍了水树的定义、分类、特征及在水树产生和发展过程中的一些影响因素及抑制方法等,并且对水树研究中提出的新机理等做了简要的概括.","authors":[{"authorName":"豆朋","id":"2c57d468-8fea-4c08-8226-5f6bc189c275","originalAuthorName":"豆朋"},{"authorName":"文习山","id":"d72b375a-ccb4-477c-8b42-cadf12df3951","originalAuthorName":"文习山"}],"doi":"10.3969/j.issn.1009-9239.2005.02.017","fpage":"61","id":"441111cf-4144-4b68-9469-a5ae6014c3b4","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"bff7d4bb-d60f-44b1-b7ed-24f5888ba6b6","keyword":"交联聚乙烯","originalKeyword":"交联聚乙烯"},{"id":"c6105044-77d9-4412-b55a-7240f8c6e8d1","keyword":"电缆","originalKeyword":"电缆"},{"id":"e3a36b95-23a9-4015-98ef-1fccb83e1aa5","keyword":"水树","originalKeyword":"水树"},{"id":"7bf4b4fd-399f-4a3b-96ab-38d5f70973fa","keyword":"降解","originalKeyword":"降解"},{"id":"66b3cbff-9764-4159-b59f-0776884bf0df","keyword":"水针法","originalKeyword":"水针法"},{"id":"0134f7f2-e3f7-4321-9a44-143404a019f0","keyword":"在线检测","originalKeyword":"在线检测"}],"language":"zh","publisherId":"jycltx200502017","title":"交联聚乙烯电缆中水树研究的现状","volume":"38","year":"2005"},{"abstractinfo":"以1,4-双(4-氨基-2-三氟甲基苯氧基)苯(6FAPB)为含氟二胺单体,均苯四甲酸二酐(PMDA)和1,2,3,4-环丁烷四酸二酐(CBDA)为二酐单体,经低温溶液缩聚反应得到聚酰胺酸,再经热酰亚胺化处理制备出含氟共聚聚酰亚胺(CPI)薄膜.采用红外(IR)、紫外(UV-Vis)、溶解性测试等对CPI进行结构与性能表征,考察两种二酐单体的不同物质的量之比对共聚聚酰亚胺光学性能和溶解性的影响.结果表明:随着脂环二酐CBDA摩尔配比的增加,CPI薄膜在410 nm处的光透过率逐渐增加,薄膜颜色逐渐变浅,溶解性有所改善.","authors":[{"authorName":"鲁云华","id":"09c92763-7a3d-4860-aac7-8c0672f668bd","originalAuthorName":"鲁云华"},{"authorName":"赵洪斌","id":"e79d0f1c-bcd6-4a61-b298-1e6a823e69ff","originalAuthorName":"赵洪斌"},{"authorName":"迟海军","id":"4d06d6df-470b-4836-9e14-6a9e68a798fb","originalAuthorName":"迟海军"},{"authorName":"董岩","id":"65896635-a332-4856-ad38-77ddf2d37753","originalAuthorName":"董岩"},{"authorName":"肖国勇","id":"6738b002-e0b1-4cb3-831f-bed85cb05445","originalAuthorName":"肖国勇"},{"authorName":"胡知之","id":"7c4d40f4-1977-435e-ab13-ebd318d5c61d","originalAuthorName":"胡知之"}],"doi":"","fpage":"1","id":"e73a30ed-13db-43ea-bea4-6581231b1334","issue":"1","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"6a5dd4f9-b106-4267-949f-792555f6ac67","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"81daa9c0-a188-4bf7-becd-eb9025259934","keyword":"共缩聚","originalKeyword":"共缩聚"},{"id":"4fa37438-567f-4a66-bd23-7b745ed05d4e","keyword":"含氟","originalKeyword":"含氟"},{"id":"e0608fa6-5b7a-44b4-9f6c-533a67987ef0","keyword":"结构与性能","originalKeyword":"结构与性能"}],"language":"zh","publisherId":"jycltx201301001","title":"含氟共聚聚酰亚胺的合成与性能研究鲁云华,赵洪斌,迟海军,董岩,肖国勇,胡知之","volume":"","year":"2013"},{"abstractinfo":"叙述了交联聚乙烯电缆中的水树对中高压XLPE电缆的危害性;介绍了水树的本质、水树生长特性,引发水树的电 - 机械理论和化学反应理论;分析了影响水树生长的因素和国内外抗水树电缆料的研究情况.","authors":[{"authorName":"何军","id":"09e675c8-3eac-4c02-a965-15a51abc02b2","originalAuthorName":"何军"},{"authorName":"屠德民","id":"051c37a1-f615-4269-a626-c58a0564d6f8","originalAuthorName":"屠德民"}],"doi":"10.3969/j.issn.1009-9239.2008.06.015","fpage":"54","id":"6523f51c-ee1b-40a6-9503-52c4a5011ba9","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"2888ec80-9e14-4ec3-a29e-f95ff2833eee","keyword":"XLPE电缆","originalKeyword":"XLPE电缆"},{"id":"27a84891-8eb8-4bda-abd3-1aff9f9b2af4","keyword":"水树","originalKeyword":"水树"},{"id":"d1df7949-d358-47f9-8a49-26463e96fc38","keyword":"形成","originalKeyword":"形成"},{"id":"0b030eb8-df87-4239-b286-e28d41d71029","keyword":"抑制","originalKeyword":"抑制"}],"language":"zh","publisherId":"jycltx200806015","title":"XLPE电缆绝缘中水树的形成机理和抑制方法分析","volume":"41","year":"2008"},{"abstractinfo":"在原有水浴法的基础上,采用高频电压对XLPE电缆进行加速老化试验,对老化后的电缆切片样品进行光学显微镜观察,并对不同老化时间电缆样品中的水树进行了统计分析。结果表明:XLPE电缆在高频电压下老化后,在人为孔洞附近会产生水树缺陷,随着老化时间的增加,水树数目增多,水树平均长度逐渐增加,其中电缆老化250 h后的水树平均长度为857μm。","authors":[{"authorName":"李鑫","id":"0e5422d5-7ed6-467e-aa99-f3fa0e366bc2","originalAuthorName":"李鑫"},{"authorName":"陈晓科","id":"fb5c9522-22f0-4116-a455-1da5b2a6b84c","originalAuthorName":"陈晓科"},{"authorName":"彭发东","id":"98a0d062-2615-4468-8e4f-ca087d263232","originalAuthorName":"彭发东"},{"authorName":"叶刚","id":"9f6028d7-fc4a-4d7b-9e7c-e7af84d5723f","originalAuthorName":"叶刚"},{"authorName":"李化","id":"3c1d347a-9bbd-43cf-9ad2-814011add8e7","originalAuthorName":"李化"},{"authorName":"林福昌","id":"03e74eba-f25f-427d-b71a-86218c258f8a","originalAuthorName":"林福昌"},{"authorName":"张钦","id":"1026f24d-d5b8-4225-97e1-399d9f02087a","originalAuthorName":"张钦"}],"doi":"","fpage":"50","id":"0798810d-c6ae-4f33-ae6f-09afba793aeb","issue":"10","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"e007267b-994e-4fcb-957c-71c9b5d5a78a","keyword":"电树","originalKeyword":"电树"},{"id":"d0f2eca2-aed7-4f00-8b57-16355229d3ae","keyword":"水树","originalKeyword":"水树"},{"id":"e27bf0d1-55b2-476d-bf4c-51cc4c2a2056","keyword":"高频电压","originalKeyword":"高频电压"},{"id":"d0f0d195-e0b6-4086-abda-2011c87d37a4","keyword":"加速老化试验","originalKeyword":"加速老化试验"},{"id":"693ee81a-b76f-45da-807a-9bb356422456","keyword":"生长率","originalKeyword":"生长率"}],"language":"zh","publisherId":"jycltx201510011","title":"高频电压加速XLPE电缆绝缘水树老化研究","volume":"","year":"2015"},{"abstractinfo":"采用事故树法分析了储罐的腐蚀行为,根据储罐内腐蚀和外腐蚀两种主要类型,建立了储罐腐蚀的事故树.通过对事故树的定性分析,可得到储罐腐蚀的30个最小割集.根据分析结果,采取相应防护措施如:抗静电涂料防腐、涂料与阴极保护相结合的保护技术、热喷铝技术以及添加缓蚀剂等,以提高储罐运行的安全性.","authors":[{"authorName":"赵雪娥","id":"2a8cf885-1dbd-4f55-afaf-f26e0225d9b2","originalAuthorName":"赵雪娥"},{"authorName":"蒋军成","id":"b49efefc-ea27-4a46-8226-f0e6ce3c86b8","originalAuthorName":"蒋军成"},{"authorName":"王若菌","id":"47718a80-38b1-46b4-8d83-aa3691f22be2","originalAuthorName":"王若菌"}],"categoryName":"|","doi":"","fpage":"213","id":"42aac96a-a476-46ad-bc92-6e194649e081","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"a12c5d42-ee7c-46e2-b0c1-e9d86610da06","keyword":"储罐","originalKeyword":"储罐"},{"id":"bf791721-c42d-4067-be6a-a274afe929f4","keyword":"null","originalKeyword":"null"},{"id":"58668c57-251e-4106-9dac-fa3c78299ca7","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_3_23","title":"原油储罐腐蚀机理及致因事故树分析","volume":"18","year":"2006"},{"abstractinfo":"采用改进水针法对XLPE电缆进行加速水树老化试验,并对老化后的切片样本形貌进行了光学显微镜及扫描电镜(SEM)观测。结果表明:改进后的水针法能有效的在针尖电极附近生成水树缺陷,水树区域尺寸可达数百微米,缺陷内部树枝通道的截面直径尺寸为微米级。","authors":[{"authorName":"陶霰韬","id":"d6bed419-e085-4d98-9824-488dc6f676d7","originalAuthorName":"陶霰韬"},{"authorName":"周凯","id":"de2c9908-fc84-4cb4-ae5d-424948c70293","originalAuthorName":"周凯"},{"authorName":"杨滴","id":"7dde0b53-c3f8-431f-97d6-4448564b9d93","originalAuthorName":"杨滴"},{"authorName":"杨明亮","id":"677797c3-c2b1-40d6-bb2e-e2903b50b0ce","originalAuthorName":"杨明亮"},{"authorName":"陶文彪","id":"3f4a139f-8b10-4baf-a31f-1447c9be0186","originalAuthorName":"陶文彪"}],"doi":"","fpage":"62","id":"64545250-0709-4ba0-bed0-b4aedebbdd79","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"d1f4cd58-2fdd-4e01-8eff-cc10ffa605a9","keyword":"XLPE电缆","originalKeyword":"XLPE电缆"},{"id":"53480745-4325-4884-917d-f9b560c0252b","keyword":"改进水针法","originalKeyword":"改进水针法"},{"id":"cda434ee-7227-4936-8750-07f7a4cdbb37","keyword":"水树","originalKeyword":"水树"},{"id":"f2b4ba7f-8a8a-4192-81d8-4106627b9cbd","keyword":"加速老化","originalKeyword":"加速老化"},{"id":"ddb027e3-a6ca-4b3d-b483-c0326b1578f7","keyword":"微观形貌","originalKeyword":"微观形貌"}],"language":"zh","publisherId":"jycltx201306016","title":"改进水针法加速XLPE电缆水树老化研究","volume":"","year":"2013"},{"abstractinfo":"为了保障甲苯回收装置的安全运行,在对已发事故进行分析的基础上,采用了事故树分析方法建立了甲苯回收装置火灾的事故树,通过对该事故树的分析,找出了甲苯回收装置在设计和运行阶段存在的主要问题,并提出了有针对性的改进方案和预防措施,以降低甲苯回收装置发生事故的风险。","authors":[{"authorName":"孙锋","id":"14fca96d-56a1-418e-a943-29507dd71b14","originalAuthorName":"孙锋"},{"authorName":"袁游龙","id":"a3476ada-11fe-48f1-b933-df1774de6752","originalAuthorName":"袁游龙"},{"authorName":"刘斌","id":"47debfa7-f3c1-44cb-8f46-88c2c16209c4","originalAuthorName":"刘斌"}],"doi":"10.13228/j.boyuan.issn1006-9356.20140331","fpage":"41","id":"79cab4d4-8a92-4d9c-ab29-bf00a089174a","issue":"9","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"d935942d-5e8c-46e3-93af-0f367559f65c","keyword":"甲苯回收","originalKeyword":"甲苯回收"},{"id":"abef05db-f888-43d7-b429-40bcfc4be077","keyword":"事故树","originalKeyword":"事故树"},{"id":"a8df2a37-5010-4a5a-82ba-8e5222e9a199","keyword":"火灾事故","originalKeyword":"火灾事故"},{"id":"da9a7b82-915d-4d9d-9026-707764cf29b9","keyword":"风险分析","originalKeyword":"风险分析"}],"language":"zh","publisherId":"zgyj201509010","title":"基于事故树的甲苯回收装置火灾风险分析","volume":"","year":"2015"},{"abstractinfo":"采用事故树法分析了储罐的腐蚀行为,根据储罐内腐蚀和外腐蚀两种主要类型,建立了储罐腐蚀的事故树.通过对事故树的定性分析,可得到储罐腐蚀的30个最小割集.根据分析结果,采取相应防护措施如:抗静电涂料防腐、涂料与阴极保护相结合的保护技术、热喷铝技术以及添加缓蚀剂等,以提高储罐运行的安全性.","authors":[{"authorName":"赵雪娥","id":"0af37619-84bb-487f-abe7-5e2387b1d53e","originalAuthorName":"赵雪娥"},{"authorName":"蒋军成","id":"9beee2bc-5d2e-4a72-871f-a2bc3ec36990","originalAuthorName":"蒋军成"},{"authorName":"王若菌","id":"ed347b31-c78c-481f-bb2a-194499f61778","originalAuthorName":"王若菌"}],"doi":"10.3969/j.issn.1002-6495.2006.03.017","fpage":"213","id":"89527653-d346-4cf3-97b5-2f3f8e1f26cc","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"4fe9ffe6-a630-4cae-a450-a67de8590a3f","keyword":"储罐","originalKeyword":"储罐"},{"id":"16c9fe24-f8bc-4a21-9478-53c9ca6647b6","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"f8b8e9f1-2411-4bdb-97b4-f04e1d5f937b","keyword":"事故树","originalKeyword":"事故树"}],"language":"zh","publisherId":"fskxyfhjs200603017","title":"原油储罐腐蚀机理及致因事故树分析","volume":"18","year":"2006"}],"totalpage":266,"totalrecord":2651}