欢迎登录材料期刊网

材料期刊网

高级检索

利用光学显微镜、X射线衍射仪、扫描电镜和力学万能试验机等研究了ZC63镁合金在不同热处理工艺下的显微组织和力学性能的变化规律。结果表明:ZC63镁合金铸态组织主要由α-Mg和呈网状分布的CuMgZn相组成;经热处理后,强化相主要由颗粒状的CuMgZn和Mg2Zn3相组成。实验合金在445℃固溶24 h后,随着时效温度的升高,合金的抗拉强度和硬度值都逐渐降低,但在180℃时效20 h,伸长率最高,达到17.2%。热处理后合金的拉伸断口形貌中分布有颗粒状CuMgZn析出相,阻碍了晶界和位错的运动,裂纹沿着颗粒状析出相的边界以及内部扩展。

Mierostrueture and mechanical properties of ZC63 magnesium alloy under differet heat-treated conditions were investigated by means of optical microscope ( OM), X-Ray diffraction ( XRD), scanning electron microscopy (SEM) and mechanical tests. Results show that the ZC63 magnesium alloy is composed mainly of ct-Mg and bulky CuMgZn phase which is network-distributed on grain boundaries continuously. After heat-treatment, strengthening phases of granular CuMgZn and Mg2Zn3 are observed in the alloy. After solid solution treatment at 445 ~ for 24 h and then aging treatment, tensile strength and micro-hardness of the alloy reduce gradually with elevating aging temperature. However, when aging at 180 ℃ for 20 h,its elongation reaches the highest value of 17.2%. Some granular CuMgZn phases detected on the tensile fracture surface of ZC63 alloy after heat-treatment can hinder the movement of grain boundaries and dislocations, which enhances strength of the alloy and cracking occurs along the boundary and the interior of the granular precipitation phase.

参考文献

[1] Mordike B.L;Kainer K.U.Magnesium alloys and their applications[M].Werkstoff-Informations Gesers Chaft,Wolfsburg,Germany,1995
[2] D.K. XU;EN-HOU HAN;L. LIU .Influence of Higher Zn/Y Ratio on the Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2009(7):1727-1740.
[3] ZOU Hong-hui;ZENG Xiao-qin;ZHAI Chun-quan et al.The effects of yttrium element.on microstructure and mechanical properties of Mg-Swt% Zn- 2wt% AI alloy[J].Materials Science and Engineering A,2005,402(1-2):142-148.
[4] 李萧,刘江文,罗承萍.铸造ZC62镁合金的时效行为[J].金属学报,2006(07):733-738.
[5] Buha, J .Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):127-137.
[6] J. BUHA;T. OHKUBO .Natural Aging in Mg-Zn(-Cu) Alloys[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,2008(9):2259-2273.
[7] 李爱文,刘江文,伍翠兰,罗承萍,焦东玲,朱红梅.铸造Mg-3Zn-1.5Cu-0.6Zr镁合金的时效硬化及析出相[J].中国有色金属学报,2010(06):1053-1059.
[8] 李爱文,刘江文,伍翠兰,罗承萍,焦东玲,朱红梅.Cu含量对铸造Mg-3Zn-xCu-0.6Zr镁合金时效析出行为的影响[J].中国有色金属学报,2010(08):1487-1494.
[9] Jun J H;Kim J M .Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy[J].Journal of Materials Science,2005,g0(9-10):2659.
[10] X. Gao;J.F. Nie .Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J].Scripta materialia,2007(7):655-658.
[11] 诺维柯夫;王子祐.金属热处理理论[M].北京:机械工业出版社,1987
[12] 李松瑞;周善初.金属热处理[M].长沙:中南大学出版社,2003
[13] 布鲁克斯cR;丁夫.有色合金的热处理、组织与性能[M].北京:冶金工业出版社,1988:7.
[14] 王晓亮,李长荣,郭翠萍,杜振民,何维.Mg-Zn合金时效过程中GP区析出的热力学分析[J].金属学报,2010(05):575-580.
[15] Bttha J .Reduced temperature(22 - 100)ageing of an Mg-Zn alloy[J].Materials Science and Engineering A,2008,492(1-2):11-19.
[16] 张磊,董选普,李继强,王爱华,罗可,樊自田.Mg-15Gd-3Y挤压合金的时效强化[J].中国有色金属学报,2010(04):599-605.
[17] 吴安如,夏长清,董丽君,覃波.Mg-6.0%Zn-0.5%Zr-2.0%Nd-1.0%Y合金的时效强化研究[J].材料热处理学报,2008(01):66-70.
[18] 陈敬区,刘江文,焦东玲,罗承萍.铸造Mg-5Zn-0.6Zr-1RE-2Y镁合金的时效硬化和时效析出相[J].金属热处理,2010(06):6-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%