欢迎登录材料期刊网

材料期刊网

高级检索

以草酸氧钛纳米颗粒为分散相,以不同黏度的二甲基硅油(运动学黏度为10 cSt、50 cSt、100 cSt、500cSt和1000 cSt)为基液制备电流变液,测试其剪切屈服强度、零场黏度、电流变效率、响应时间及沉降稳定性,研究了基液黏度对草酸氧钛电流变液性能的影响.结果表明,以50 cSt二甲基硅油为基液的电流变液具有最佳的电流变效率,以100 cSt二甲基硅油为基液的电流变液具有最短的响应时间和较高的沉降稳定性.其机制是,较高的基液黏度可提供较大的黏滞阻力,但易引起颗粒的团聚.

参考文献

[1] Gong X,Wu J,Wen W J,et al.The giant electrorheological effect in suspensions of nanoparticles[J].Nature Materials,2003,2(11):727-730.
[2] Lu K,Shen R,Wang X,et al.The electrorheological fluids with high yield stress[J].International Journal of Modern Physics B,2005,19(7-9):1065-1070.
[3] Liu X H,Guo J,Cheng Y C,et al.Synthesis and electrorheological properties of polar molecule-dominated TiO particles with high yield stress[J].Rheol Acta,2010,49:837-843.
[4] Tan P,Tian W J,Wu X F,et al.Saturated orientational polarization of polar molecules in giant electrorheological fluids[J].J Phys Chem B,2009,113(27):9092-9097.
[5] 赵晓鹏,段旭.CMS/TiO2杂化材料电流变液的制备及其性能[J].复合材料学报,2002,19(2):54-58.Zhao Xiaopeng,Duan Xu.Preparation of CMS/TiO2 hybrid material electrorheological fluid and its properties[J].Acta Materiae Compositae Sinica,2002,19(2):54-58.
[6] Shen R,Wang W Z,Yang L,et al.Polar-moleculedominated electrorheological fluids featuring high yield stresses[J].Advanced Materials,2009,21..1-5.
[7] Wang X Z,Shen R,Wang D,et al.The electrode effect on polar molecule dominated electrorheological fluids[J].Materials and Design,2009,30:4521-4524.
[8] Huo L,Li J R,Liao T H.The comparison between carboxyl,amido and hydroxy group in influencing electrorheological performance[J].Korea-Australia Rheology Journal,2011,23(1):17-23.
[9] Huang X,Wen W J,Yang S H,et al.Mechanisms of the giant electrorheological effect[J].Solid State Communications,2006,139:581-588.
[10] 赵艳,王宝祥,赵晓鹏.改性纳米氧化钛电流变液的制备及其特性[J].复合材料学报,2006,23(3):96-102.Zhao Yan,Wang Baoxiang,Zhao Xiaopeng.Synthesis andelectrorheological properties of modified TiO2 nanoparticles[J].Acta Materiae Compositae Sinica,2006,23(3):96-102.
[11] Bao W,Zheng J,Wu X F,et al.Short axis contact in the chaining of ellipsoidal particles of polar molecule dominated electrorheological fluid[J].Journal of Physics,2012,22:1-6.
[12] 田煜,孟永钢,茅海荣,等.电场作用下电流变液的拉伸、压缩和剪切特性分析[J].复合材料学报,2003,20(1):91-95.Tian Yu,Meng Yonggang,Mao Hairong,et al.Elongation compression and shearing characteristics of ER fluids underelectric fields[J].Acta Materiae Compositae Sinica,2003,20(1):91-95.
[13] Gong X G,Wu J B,Wen W J.Influence of liquid phase on nanoparticle-based giant electrorheological fluid[J].Nanotechnology,2008,19:1-6.
[14] Liu F,Xu G,Wu J,et al.Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles[J].Colloid Polym Sci,2010,288:1739-1744.
[15] 赵晓鹏.电场调控的智能软材料[M].北京:科学出版社,2011.Zhao Xiaopeng.Smart soft material of the electric field control[M].Beijing:Science Press,2011.
[16] Qiao Y P,Yin J P,Zhao X P.Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles[J].Smart MaterStruct,2007,16:332-339.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%