欢迎登录材料期刊网

材料期刊网

高级检索

利用基于密度泛函第一性原理的GGA方法,计算研究了硼的高压相γ-B28的能带结构、态密度、分态密度和光学性质.计算结果表明,γ-B28具有半导体能带结构的特征,其带隙达1.619eV,且整个带结构由杂化的硼2p态和2s态组成,且2p态占主导地位.γ-B28的静态介电常数为11.0733,静态的折射率为3.328,介电函数虚部的吸收边位于1.7eV左右,同时,在2.693eV和5.232eV处有2个明显的特征峰.γ-B28的反射系数在0~16eV范围内随着能量的升高而逐渐增大,但在19.4eV时反射系数急剧下降,而吸收系数的数量级达105cm-1,其电子能量损失谱(EELS)的共振峰在19.4eV处,与反射系数的陡降相对应.

参考文献

[1] Eremets M I;Struzhkin V W;Mao H K et al.Supercon-ductivity in baron[J].Science,2001,293:272.
[2] Sanz D N;Loubeyre P;Mezouar M .Equation of state and pressure induced arnorphization of β-boron from X-ray measure-ments up to 100GPa[J].Physical Review Letters,2002,89:245501-245504.
[3] Ma Y Z;Prewitt C T;Zou G T et al.High-pressure high-temperature X-ray diffraction of β-boron to 30GPa[J].Physical Review B:Condensed Matter,2003,67:174116-174116.
[4] Masago A;Shirai K;Yoshida H K .Crystal stability of a and β-boron[J].Physical Review B:Condensed Matter,2006,73:104102-104110.
[5] Shirai K;Masago A;Katayama-Yoshida H .High-pressure properties and phase diagram of boron[J].Physica status solidi, B. Basic research,2007(1):303-308.
[6] Zarechnaya E Yu;Dubrovinsky L;Dubrovinskaia N et al.Synthesis of an orthorhombic high pressure boron phase[J].Science and Technolngy of Advanced Materials,2008,9:044209-044204.
[7] Oganov A R;Chen J H;Gatti C et al.Ionic high-pressure form of elemental boron[J].Nature,2009,457:863.
[8] Zarechnaya E Yu;Dubrovinsky L;Dubrovinskaia N et al.Superhard semiconducting optically transparent high pres-sure phase of boron[J].Physical Review Letters,2009,102:185501-185504.
[9] Le Godec, Y;Kurakevych, OO;Munsch, P;Garbarino, G;Solozhenko, VL .Equation of state of orthorhombic boron, gamma-B-28[J].Solid State Communications,2009(33/34):1356-1358.
[10] Rulis P;Wang L Y;Ching W Y .Prediction of γ-B28 ELNES with comparison to a-B12[J].Physical Status Solidi RRL,2009,3(05):133.
[11] Jiang C;Lin Z J;Zhang J Z et al.First-principles prediction of mechanical properties of garnma-boron[J].Applied Physics Letters,2009,94:191906-191903.
[12] Segall MD.;Lindan PJD.;Probert MJ.;Pickard CJ.;Hasnip PJ.;Clark SJ. Payne MC. .First-principles simulation: ideas, illustrations and the CASTEP code[J].Journal of Physics. Condensed Matter,2002(11):2717-2744.
[13] Perdew J P;Zunger A .SeIf-interaction correction to density-functional approximations for many-electron systems[J].Physical Review B:Condensed Matter,1981,23:5048.
[14] Ceperley D M;Aider B J .Ground state of the electron gas by a stochastic method[J].Physical Review Letters,1980,45:566.
[15] Zhang X Y;Chen Z W;Zhang S L et al.Electronic and op-tical properties of roek-salt aluminum nitride obtained from first principles[J].Journal of Physics:Condensed Matter,2007,19:425231-425235.
[16] Monkhorst H J;Pack J D .Special points for brillouin-zone integrations[J].Physical Review B:Condensed Matter,1976,13:5188.
[17] 沈学础.半导体光谱和光学性质[M].北京:科学出版社,1992:76.
[18] 尚学府,陶向明,陈文斌,陈会贤,王淼,谭明秋.MgB2各向异性光学性质的第一性原理研究[J].物理学报,2008(09):5838-5843.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%