欢迎登录材料期刊网

材料期刊网

高级检索

采用双辊薄带连铸工艺试制了1.7% Si无取向硅钢铸带,并采用光学显微镜及电子背散射衍射(EBSD)技术研究了其在铸轧及随后的冷轧和退火过程中的组织和织构演变特征.结果表明:铸带表层至中间层为粗大的等轴晶粒,中心层为细小的等轴晶.铸带织构为强的< 100>∥ND织构,铸带冷轧后的冷轧组织中存在大量剪切带,冷轧织构由强的<110 >//RD和较弱的<111 >//ND织构组成.冷轧板经900℃退火后出现强的{001} <130>再结晶织构,再结晶织构的形成可以解释为择优形核和晶粒的择优长大机制.

Fe-1.7% Si steel strip was produced by a vertical type twin-roll strip caster.The evolution of microstructure and texture of the steel strip was investigated by optical microscope and electron backscattered diffraction (EBSD) technique.The results show that the ascast strip has large equiaxed grains in the surface to the middle layer,and small equiaxed grains in the center layer,and the texture of the as-cast strip is strong < 100 >//ND texture.A large amount of shear bands is observed in the cold rolled sheet,and the texture consists of strong < 110 >//RD and weak < 111 >//ND texture.Strong { 001 } < 130 > recrystallization textures can be formed in the cold rolled sheet after annealing at 900 ℃.The recrystallization texture can be explained by favored nucleation and grain growth mechanism.

参考文献

[1] Takashima M.;Morito N.;Komatsubara M..(001)(210) TEXTURE DEVELOPMENT BY TWO-STAGE COLD ROLLING METHOD IN NON-ORIENTED ELECTRICAL STEEL[J].ISIJ International,199712(12):1263-1268.
[2] Taisei Nakayama;Noriyuki Honjou.Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet[J].Journal of Magnetism and Magnetic Materials,20001/2(1/2):87-94.
[3] Oldani C.;Silvetti S.P..Microstructure And Texture Evolution During The Annealing Of A Lamination Steel[J].Scripta materialia,20002(2):129-134.
[4] B.Y. Huang;K. Yamamoto;C. Kaido.Effect of cold-rolling on magnetic properties of non-oriented silicon steel sheets (Part II)[J].Journal of Magnetism and Magnetic Materials,20001/3(1/3):197-200.
[5] 马良;项利;仇圣桃;赵沛.正火对双辊薄带连铸5.28%Si-1.11%Al无取向高硅钢磁性能的影响[J].金属热处理,2013(6):58-62.
[6] WANG Jun-an;ZHOU Bang-xin;YAO Mei-yi.Formation and Control of Sharp {100}<021> Texture in Electrical Steel[J].Journal of iron and steel research,20062(2):54-58.
[7] K. Verbeken;L. Kestens.Strain-induced selective growth in an ultra low carbon steel after a small rolling reduction[J].Acta materialia,20036(6):1679-1690.
[8] Park, JT;Szpunar, JA.Effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels[J].Journal of Magnetism and Magnetic Materials,200913(13):1928-1932.
[9] 张元祥;许云波;刘振宇;王国栋.双辊薄带连铸对无取向硅钢织构和磁性能的影响[J].材料热处理学报,2012(8):64-68.
[10] F.J.G. Landgraf;T. Yonamine;R. Takanohashi.Magnetic properties of silicon steel with as-cast columnar structure[J].Journal of Magnetism and Magnetic Materials,20030(0):364-366.
[11] Jae Young PARK;Kyu Hwan OH.Texture and Deformation Behavior through Thickness Direction in Strip-cast 4.5wt percent Si Steel Sheet[J].ISIJ International,200012(12):1210-1215.
[12] Haitao Liu;Zhenyu Liu;Chenggang Li.Solidification structure and crystallographic texture of strip casting 3 wt.% Si non-oriented silicon steel[J].Materials Characterization,20115(5):463-468.
[13] Hao-Ze Li;Hai-Tao Liu;Zhen-Yu Liu.Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel[J].Materials Characterization,2014:1-6.
[14] Nikolai ZAPUSKALOV.Effect of Coiling Operation on Strip Quality of 4.5% Si Steel inTwin-roll Casting Process[J].ISIJ International,19995(5):463-470.
[15] J.L. Liu;Y.H. Sha;F. Zhang.Development of {2 1 0}(0 0 1) recrystallization texture in Fe-6.5 wt.% Si thin sheets[J].Scripta materialia,20114(4):292-295.
[16] Hai-Tao Liu;Zhen-Yu Liu;Yu Sun;Yi-Qing Qiu;Cheng-Gang Li;Guang-Ming Cao;Byung-Deug Hong;Sang-Hoon Kim;Guo-Dong Wang.Formation of {001} <510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel[J].Materials Letters,2012:65-68.
[17] M. Z. Quadir;B. J. Duggan.A microstructural study of the origins of gamma recrystallization textures in 75 percent warm rolled IF steel[J].Acta materialia,200616(16):4337-4350.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%