欢迎登录材料期刊网

材料期刊网

高级检索

在不同总应变幅下对高层错能粗晶纯铝进行疲劳实验直至达到近似相同的累积应变量,然后再在不同温度(200、330和450℃)进行退火处理。利用透射电子显微镜观察疲劳位错结构及其退火后微观结构的变化。结果表明:粗晶纯铝疲劳位错结构主要为胞结构,胞尺寸随着外加应变幅的升高逐渐减小,胞壁逐渐变得致密,胞内位错密度下降;粗晶纯铝疲劳处理后在3个温度下进行退火处理,所有样品的疲劳位错结构均发生明显的回复现象;只是在相对较低温度200℃退火时,低应变幅下形成的位错结构的回复机制主要为空位消失和异号位错相消,而中、高应变幅下位错结构的回复机制主要表现为多边形化回复机制。粗晶纯铝经不同总应变幅疲劳后的 DSC曲线测量结果与TEM观察结果基本一致。

Coarse-grained pure Al with a high stacking fault energy was first fatigued at different total strain amplitudes (?εt/2) up to almost the same accumulated strain, and then annealed at different temperatures (200, 330 and 450 ℃) for 30 min. The fatigue dislocation structures as well as the microstructural changes resulting from subsequent annealing treatments were detected by TEM. The results show that the dislocation structures of fatigued pure Al are mainly characterized by dislocation cells. With increasing ?εt/2, the average cell size decreases, the cell walls become more densified, and the density of dislocations in cells decreases. For the coarse-grained pure Al samples fatigued and then annealed at those three temperatures for 30 min, a clear recovery of fatigue dislocation structures occurs for all samples. The only difference exists in the recovery mechanism of the samples fatigued at different strain amplitudes and then annealed at a comparatively lower temperature of 200 ℃; for instance, the recovery process of dislocation structures induced by fatigue at lower strain amplitude is mainly determined by the disappearance of vacancies and the annihilation of dislocations of opposite sign, while the polygonization recovery dominates at higher strain amplitudes. The results of DSC measurements on the pure Al samples fatigued at different strain amplitudes are basically consistent with the results of TEM observations.

参考文献

[1] VORREN O;RYUM N .Cyclic deformation of al-single crystals at low constant plastic strain amplitudes[J].ACTA METALLURGICA,1987,35(04):855-866.
[2] VORREN O;RYUM N .Cyclic deformation of al single crystals:effect of the crystallographic orientation[J].ACTA METALLURGICA,1988,36(06):1443-1453.
[3] VIDEM M;RYUM N .Cyclic deformation of [001]aluminium single crystals[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1996,219(1/2):1-10.
[4] VIDEM M;RYUM N .Cyclic deformation and fracture of pure aluminium polycrystals[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1996,219(1/2):11-20.
[5] 刘国东;朱振刚;王静 .高纯铝单晶在拉压疲劳早期过程中的行为[J].金属学报,1996,32(05):510-515.
[6] Y. El-Madhoun;A. Mohamed;M. N. Bassim .Cyclic stress-strain response and dislocation structures in polycrystalline aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):220-227.
[7] Toshiyuki Fujii;Naoki Sawatari;Susumu Onaka .Cyclic deformation of pure aluminum single crystals with double-slip orientations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):486-490.
[8] Li XW.;Wang ZG.;Hu YM. .Investigation of dislocation structure in a cyclically deformed copper single crystal using electron channeling contrast technique in SEM[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):299-303.
[9] Li XW.;Umakoshi Y.;Gong B.;Li SX.;Wang ZG. .Dislocation structures in fatigued critical and conjugate double-slip-oriented copper single crystals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):51-59.
[10] KUHLMAN-WILSDORF D;COMINS N R .Dislocation cell formation and work hardening in the unidirectional glide of f.c.c. metals I:Basic theoretical analysis of cell walls parallel to the primary glide plane in early stage II[J].Material Science and Engineering,1983,60(01):7-24.
[11] KUHLMAN-WILSDORF D .Deformation bands,the LEOS theory and their importance in texture development[J].Philosophical Magazine A:Physics of Condensed Matter Defects and Mechanical Properties,1999,79:955-1008.
[12] Zhirui Wang .Experimental study of the thermal stability of dislocation structures produced through cyclic deformation in copper polycrystals[J].Scripta materialia,1998(4/5):493-500.
[13] CHEN S;GOTTSTEIN S .Recoery in low-cycle-fatigued copper single crystals[J].Material Science and Engineering,1989,110(08):9-11.
[14] 郭巍巍,齐成军,李小武.一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究[J].金属学报,2013(01):107-114.
[15] 郭巍巍,任焕,齐成军,王小蒙,李小武.一个单滑移取向铜单晶体疲劳位错结构的热稳定性研究[J].物理学报,2012(15):407-413.
[16] KUHLMANN-WILSDORF D .A critical test on theories of work-hardening for the case of drawn iron wire[J].Metallurgical Transactions,1970,1(11):3173-3179.
[17] CHICOIS J;FOUGERES R;GUICHON G;HAMEL A VINCENT A .Mobilite des dislocations lors de la sollicitation cyclique de l'aluminium polycristallin[J].ACTA METALLURGICA,1986,34:2157-2170.
[18] 李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1966:291-293.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%