欢迎登录材料期刊网

材料期刊网

高级检索

采用有限元模拟了SiC/Ti-6Al-4V复合材料冷却过程和横向拉伸试验过程,横向拉伸试样采用十字形试样。分别建立了平面应力和轴对称有限元模型,采用平面应力有限元模型计算环绕纤维圆周的界面微区应力分布,预测界面失效机制。采用轴对称有限元模型分析复合材料界面脱粘过程以及残余应力对界面径向应力分布的影响。结果表明:对于SiC/Ti-6Al—4V复合材料十字形试样,在横向拉伸载荷下的界面失效由径向应力导致,界面失效模式为法向失效,剪切失效模式未发生;十字形试样在横向拉伸载荷下界面初始脱粘位置处于界面中间;随横向拉伸应力增加,十字形试样的界面脱粘对称向两边扩展;界面径向应力随残余应力降低而升高。

The cooling process of SiC/Ti - 6Al - 4V composites and the transverse tensile test were simulated by finite element method. The cruciform specimen was selected to conduct the transverse tensile test of SiC/Ti - 6Al - 4V composites. In finite element analysis, the plain stress finite element model was used to analyze the interface stress distribution and failure mechanism of the cruciform specimen under the transverse tensile stress. The axisymmetric finite element model was adopted to analyze the interface debonding process and the effects of residual stress on the radial stress distribution at the interface. The results show that under the transverse tensile stress, the interface failure of the cruciform specimen is only resulted from the radial stress. The interface failure mode is the normal failure not the tangential failure. The interface debonding of the cruciform specimen appears in the middle of the interface. With the increasing of the transverse tensile stress, the interface debonding of the cruciform specimen symmetrically extends to both sides. Radial stresses at the interface increase with the decreasing thermal residual stresses.

参考文献

[1] Gundel D B,Warrier S G, Miracle D B. The transversetensile behavior of SiC - fiber/Ti - 6A1 - 4V composites 2:Stress distribution and interface failure [J]. Comp Sci Tech,1999, 59: 1087-96.
[2] Warrier S G, Majumdar B S,Gundel D B. Implications oftangential shear stress induced failure during transverse1997, 45: 3469-3480.
[3] 邵雪娇,康国政,郭素娟.考虑界面结合的SiCP/6061Al复合材料时间相关棘轮行为的三维有限元分析[J].复合材料学报,2009,26(2): 18-24.
[4] 段慧玲,王建祥,黄筑平,等.颗粒增强复合材料的界面模型与界面相模型的关系[J].复合材料学报,2004, 21(3): 102-109.
[5] Chandra N,Ananth C R. Analysis of interfacial behavior inMMCs and IMCs by the use of thin-slice push-out tests [J].Comp Sci Tech, 1995,54(1): 87-100.
[6] Yuan M N,Yang Y Q. Analysis of interfacial behavior intitanium matrix composites by using the finite element method(SCS-6/Ti55) [J], Scripta Mater, 2007,56(6): 533-36.
[7] 张鹏,李付国.界面对颗粒增强金属基复合材料强化性能的影响[J].材料学科与工艺,2010,18(2): 192-198.
[8] 康国政,高庆,刘世楷,等.界面对短纤维增强金属基复合材料力学行为的影响[J].复合材料学报,1999,16(1): 35-40.
[9] 原梅妮,杨延清,黄斌,等.界面反应对SC纤维增强钛基复合材料界面剪切强度的影响[J].稀有金属材料与工程,2009, 38(8): 1321-1324.
[10] Yang Y Q, Dudke H J, Kumpfert J. Interfacial reaction andstability of SCS - 6 SiC/Ti - 25A1 - 10NB - 3V - 1MOcomposites [J], Mater Sci Eng A, 1998, 246(2) : 213-220.
[11] Warrier S G,Bourke M A M, Krishnamurthy S. Assessmentof the fiber/matrix interface bond strength in SiC/Ti - 6A1 -4V composites [J]. Mater Sci Eng A,1999,259(2): 220-227.
[12] Ananth C R, Chandra N. Elevated temperature interfacialbehaviour of MMCs: A computational study [J]. Compos:Part A, 1996,27(9): 805-811.
[13] Zeng W D,Peters P W M,Tanaka Y. Interfacial bondstrength and fracture energy at room and elevated temperaturein titanium matrix composites (SCS - 6/Timetal 834) [J].Composites: Part A,2002,33: 1159-1170.
[14] Tandon G P,Kim R Y,Warrier S G,et al. Influence of freeedge and corner singularities on interfacial normal strength:Application in model unidirectional composites [ J ].Composites: Part B, 1999,30(2) : 115-134.
[15] Gundel D B, Warrier S G,Miracle D B. The transversetensile behavior of SiC - fiber/Ti - 6A1 - 4V composites 2:Stress distribution and interface failure [J]. Comp Sci Tech,1999, 59: 1087-1096.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%