系统研究了Ti100-x-yVxFey(x=54,49,44;y=5,7.5,10)储氢合金的相结构及其吸放氢性能.XRD及SEM分析表明,Ti41V54Fe5合金由体心立方(BCC)结构的固溶体主相和少量的α-Ti第二相组成;而Ti43.5V49Fe7.5和Ti46V44Fe10合金均为单一的BCC固溶体相.储氢性能测试表明,3种合金的动力学性能均很好,在室温和4 MPa初始氢压条件下,无需氢化孕育期就能快速吸氢;经4次~5次吸放氢循环即能活化,仅2 min~3 min就能吸氢饱和达到最大吸氢量363.7ml/g~372.4 ml/g;在300℃和0.1 MPa放氢终压条件下,合金的放氢量在220.3 ml/g~238.5 ml/g之间.在所研究的合金中,Ti46V44Fe10合金的综合性能最佳,经4次吸放氢循环即活化,室温最大吸氢量可达372.4 ml/g,放氢量达到238.5 ml/g.
参考文献
[1] | Cho Sung-Wook;Han Chang-Suck;Park Choong-Nyeon et al.[J].Journal of Alloys and Compounds,1999,288:294. |
[2] | Nomura Kei;Akiba Etsuo .[J].Journal of Alloys and Compounds,1995,231:513. |
[3] | Okada M.;Kuriiwa T.;Kamegawa A.;Takamura H. .Role of intermetallics in hydrogen storage materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(0):305-312. |
[4] | Tamura T;Tominaga Y;Matsumoto K et al.[J].Journal of Alloys and Compounds,2002,330-332:522. |
[5] | Cho Sung-Wook;Han Chang-Suck;Park Choong-Nyeon et al.[J].Journal of Alloys and Compounds,1999,289:244. |
[6] | Akiba E;Iba H .[J].Intermetallics,1998,6:461. |
[7] | Sandrock Gary .[J].Journal of Alloys and Compounds,1999,293-295:877. |
[8] | 陈长聘,徐海鸥,王舷,陈立新.V+TiFe0.85Mn0.15复相合金的储氢特性[J].稀有金属材料与工程,2003(04):291-294. |
[9] | Tominaga Y;Nishimura S;Amemiya T et al.[J].Materials Transactions,1999,40(09):871. |
[10] | Tominaga Y.;Matsumoto K. .Protium Absorption-Desorption Properties of Ti-V-Cr-(Mn,Ni) A11oys[J].Materials transactions,2000(5):617-620. |
[11] | Itoh H;Arashima H;Kubo K et al.[J].Journal of Alloys and Compounds,2002,330-332:287. |
[12] | Arashima H;Takahashi F;Ebisawa T et al.[J].Journal of Alloys and Compounds,2003,356-357:405. |
[13] | Cho Sung-Wook;Enoki Hirotoshi;Akiba Etsuo .[J].Journal of Alloys and Compounds,2000,307:304. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%