欢迎登录材料期刊网

材料期刊网

高级检索

简述了近年来高温合金设计的研究进展,分析和讨论了蠕变性能、微观组织稳定性、铸造性能、密度和成本等方面因素在合金设计中的影响.并具体论述了相计算方法、d电子理论、多元回归法、相图计算方法等高温合金设计方法的设计思路、理论基础及应用.最后,结合高温合金的使用要求,对未来高温合金设计的研究方向和发展趋势进行了探讨和展望.

参考文献

[1] 胡壮麒,刘丽荣,金涛,孙晓峰.镍基单晶高温合金的发展[J].航空发动机,2005(03):1-7.
[2] Yukawa N;Morinaga M;Ezaki H.Alloy design of superalloys by d-electrons concept[A].Berlin:Springer-Verlag,1986:35.
[3] Murata Y;Miyazaki S;Morinaga M.Hot corrosion and high strength nickel-based single crystal and directionally-solidified superalloys developed by the d-electrons concept[A].Warrendale:TMS,1996:61.
[4] Md. MONIRUZZAMAN;Y. MURATA;M. MORINAGA .Alloy Design of Ni-based Single Crystal Superalloys for the Combination of Strength and Surface Stability at Elevated Temperatures[J].ISIJ International,2003(8):1244-1252.
[5] R.C. Reed;T. Tao;N. Warnken .Alloys-By-Design: Application to nickel-based single crystal superalloys[J].Acta materialia,2009(19):5898-5913.
[6] Yoo YS.;Jo CY.;Jones CN. .Compositional prediction of creep rupture life of single crystal Ni base superalloy by Bayesian neural network[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):22-29.
[7] A. Janotti;M. Krcmar;C. L. Fu;R. C. Reed .Solute Diffusion in Metals: Larger Atoms Can Move Faster[J].Physical review letters,2004(8):085901.1-085901.4.
[8] Reed R C.The superalloys:Fundamentals and applications[M].Cambridge,UK:Cambridge University Press,2006
[9] B. F. Dyson .Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2009(2):213-220.
[10] Murakumo T;Kobayashi T;Koizumi Y et al.Creep behaviour of Ni-base single crystal superalloys with various γ'volume fraction[J].ACTA MATERIALIA,2004,52(12):3737.
[11] Pyczak F;Neumeier S;G(o)ken M .Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2009,510:295.
[12] Gilles R;Mukherji D;T(o)bbens D M et al.Neutron X-ray and electron-diffraction measurements for the determination of γ/γ' lattice misfit in Ni-base superalloys[J].Applied Physics A(Materials Science and Processing),2002,74(1):s1446.
[13] Diologent F.;Caron P.;d'Almeida T.;Jacques A.;Bastie P. .The gamma/gamma ' mismatch in Ni based superalloys: In situ measurements during a creep test[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,2003(0):346-351.
[14] Pyczak F;Devrient B;Mughrabi H.The effects of different alloying elements on the thermal expansion coefficients,lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction[M].Superalloys 2004.Warrendale:TMS,2004:827.
[15] C. M. F. RAE;R. C. REED .THE PRECIPITATION OF TOPOLOGICALLY CLOSE-PACKED PHASES IN RHENIUM-CONTAINING SUPERALLOYS[J].Acta materialia,2001(19):4113-4125.
[16] R.A. HOBBS;S. TIN;C.M.F. RAE .A Castability Model Based on Elemental Solid-Liquid Partitioning in Advanced Nickel-Base Single-Crystal Superalloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2005(10):2761-2773.
[17] Boesch W J;Slaney J S .Preventing sigma phase embrittlement in nickel-base superalloy[J].METAL PROGRESS,1964,86(1):109.
[18] Woodyatt L R;Sims C T;Beattie H J .Prediction of sigma-type phase occurrence from compositions in austenitic superalloys[J].Trans TMS-AIME,1966,236:519.
[19] 张济山;崔华;胡壮麒 .d电子合金理论及其在合金设计中的应用[J].材料科学与工程,1993,11(3):1.
[20] 张济山;崔华;村田纯教 等.应用d电子理论发展新型抗热腐蚀单晶镍基高温合金:Ⅰ.相稳定性临界条件的确定[J].金属学报,1993,29(7):A289.
[21] 张济山;崔华;村田纯教 等.应用d电子理论发展新型抗热腐蚀单晶镍基高温合金:Ⅱ.合金元素对显微组织和性能的影响[J].金属学报,1993,29(7):A297.
[22] 张济山;崔华;村田纯教 等.应用d电子理论发展新型抗热腐蚀单晶镍基高温合金:Ⅲ.性能评价[J].金属学报,1994,30(2):A70.
[23] Harada H;Yamazaki M;Koizurni Y.Alloy design for nickel-base superalloys[A].Liege,1982:721.
[24] Yamazaki M.Development of nickel-base superalloys for a national project in JapanHigh Temperature Alloys for Gas Turbine and Other Applications[M].Berlin:Springer,1986:945.
[25] Saunders N;Miodownik A P.CALPHAD-Calculation of phase diagrams:A comprehensive guide[M].Oxford:Pergamon,1998
[26] 戴占海,卢锦堂,孔纲.相图计算的研究进展[J].材料导报,2006(04):94-97.
[27] U. R. Kattner;C. E. Campbell .Modelling of thermodynamics and diffusion in multicomponent systems[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2009(4):443-459.
[28] R. Rettig;R.F. Singer .Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys[J].Acta materialia,2011(1):317-327.
[29] N. Saunders;Z. Guo;X. Li .Using JMatPro to Model Materials Properties and Behavior[J].JOM,2003(12):60-65.
[30] Saunders N;Guo Z;Li X.Modelling the material properties and behaviour of Ni-based superalloys[A].Warrendale:TMS,2004:849.
[31] 王静,孙锋,董显平,陈科,张澜庭,单爱党.几种典型镍基单晶高温合金成分设计的热力学分析[J].上海有色金属,2011(02):49-56.
[32] 王衣,孙锋,董显平,张澜庭,单爱党.新型Ni-Co基高温合金中平衡析出相的热力学研究[J].金属学报,2010(03):334-339.
[33] Koizumi Y;Kobayashi T;Yokokawa T.Development of next-generation Ni-base single crystal superalloys[A].Warrendale:TMS,2004:35.
[34] Sato A;Harada H;Kawagishi K.A 5th generation SC superalloy with balanced high temperature properties and processability[A].Warrendale:TMS,2008:131.
[35] Zhou S H;Wang Y;Zhu J Z.Computational tools for designing Ni-base superalloys[A].Warrendale:TMS,2004:969.
[36] Cottura, M.;Le Bouar, Y.;Finel, A.;Appolaire, B.;Ammar, K.;Forest, S. .A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys[J].Journal of the Mechanics and Physics of Solids,2012(7):1243-1256.
[37] Tancret, F. .Computational thermodynamics, Gaussian processes and genetic algorithms: Combined tools to design new alloys[J].Modelling and simulation in materials science and engineering,2013(4):045013-1-045013-9.
[38] 汤山道也;横川忠晴;小泉裕 等.Ni基超合金開発のためのデ一夕ベ一ス構築[J].日本金属学会誌,2009,73(6):469.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%