欢迎登录材料期刊网

材料期刊网

高级检索

基于对过去研究工作的总结,综述了国内外关于大变形铜基原位复合材料强化机理的研究进展.重点叙述了位错强化模型和界面障碍强化模型,并展望了此类复合材料强化机理的研究趋势.

参考文献

[1] Bevk J;Harbison J'P;Bell J D .Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites[J].Applied Physics,1978,49:6031.
[2] Harbison J P;Berk J .Superconducting and mechanical properties of in situ formed multifilamentary Cu-Nb3Sn composites[J].Applied Physics,1977,48:5180.
[3] Foner S;McniffJr E J;Schwartz B B et al.High-field critical current in in-situ multifilamentary Cu-Sn-Nb alloys[J].Applied Physics Letters,1977,31:853.
[4] Filgueria M;Pinatti D P;In situ diamond wires part I .The Cu-15 vol% Nb high strength cable[J].Journal of Materials Processing Technology,2002,128:191.
[5] 陈小红 .超高强度Cu-Cr系原位复合材料的研究[D].西安理工大学,2009.
[6] Spitzig W A;Pelton A R;Laabs F C .Characterization of the strength and microstructure of heavily cold worked CuNb composites[J].Acta Metallurgica,1987,35:2427.
[7] U. HANGEN;D. RAABE .MODELLING OF THE YIELD STRENGTH OF A HEAVILY WIRE DRAWN Cu-20%Nb COMPOSITE BY USE OF A MODIFIED LINEAR RULE OF MIXTURES[J].Acta Metallurgica et Materialia,1995(11):4075-4082.
[8] Funkenbusch P D;Lee JK;Courtney T H .Ductile twephase alloys:Prediction of strengthening at high strains[J].Metallurgical and Materials Transactions,1987,18A(07):1249.
[9] 葛继平 .形变Cu-Fe原位复合材料[D].大连交通大学,2005.
[10] 葛继平,姚再起.高强度高导电的形变Cu-Fe原位复合材料[J].中国有色金属学报,2004(04):568-573.
[11] 宁远涛,张晓辉,张婕.大变形Cu-10Ag原位纳米纤维复合材料[J].稀有金属材料与工程,2005(12):1930-1934.
[12] 宁远涛,张晓辉,张婕.大变形Cu-Ag合金原位纤维复合材料的稳定性[J].中国有色金属学报,2005(04):506-512.
[13] 高海燕,王俊,疏达,孙宝德.Cu-Fe-Ag原位复合材料的组织和性能[J].复合材料学报,2006(06):120-126.
[14] 张雷 .纤维相增强Cu-Ag合金的显微组织及力学和电学性能[D].浙江大学,2005.
[15] Spitzig W A;Chumbley L S;Verhoeven J D et al.Effect of temperature on the strength and conductivity of a deformation processed Cu-20% Fe composite[J].Journal of Materials Science,1992,27:2005.
[16] Funkenbusch P D;Courtney T H .On the strength of heavily cold worked in situ composites[J].Acta Metallurgica,1985,33(05):913.
[17] Courtney T H;Kampe J C M .Shape instabilities of platelike structures-Ⅱ Analysis[J].Acta Metallurgica,1989,37:1747.
[18] Kampe J C M;Courtney T H .Elevated temperature microstructural stability of heavily cold-worded in-situ composites[J].Scripta Materialia,1986,20:285.
[19] V. Vidal;L. Thilly;S. Van Petegem .Plasticity of nanostructured Cu-Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons[J].Scripta materialia,2009(3):171-174.
[20] Vidal V;Thilly L;Lecouturier F et al.Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix:The way to reach exreme mechanical properties in high strength conductors[J].Scripta Materialia,2007,57(03):245.
[21] Thilly T.;Ludwig O.;Lecouturier F.;Veron M. .Deformation mechanism in high strength Cu/Nb nanocomposites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):510-513.
[22] Raabe D;Hangen U .Simulation of the yield strength of wire drawn Cu-based in-situ composites[J].Computational Materials Science,1996,5(1-3):195.
[23] Spitzig W A .Strengthening in heavily deformation processed processed Cu-20% Nb composite[J].Acta Metallurgica Et Materialia,1991,39(06):1085.
[24] Verhoeven J D;Spitzig W A;Jones L L et al.Development of deformation processed copper-refractory metal composite alloys[J].Journal of Materials Engineering,1990,12:127.
[25] Biselli C;Morris D G .Microstructure and strength of Cu-Fe in situ composites after very high drawing strains[J].Acta Materialia,1996,44:493.
[26] Hong S I;Hill M A .Mechanical properties of Cu-Nb microcomposites fabricated by the bunding and drawing process[J].Scripta Metallurgica,2000,42:737.
[27] Hong, SI;Hill, MA .Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,1999(1-2):151-158.
[28] Z.W.SHAN;RAJA K.MISHRA;S.A.SYED ASF .Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J].Nature materials,2008(2):115-119.
[29] Strong crystal size effect on deformation twinning[J].Nature,2010(Jan.21 TN.7279):335.
[30] Nix W D;Gree J R;Feng G et al.Deformation at the nanometer and micrometer length scales:Effects of strain gra-dients and dislocation starvation[J].THIN SOLID FILMS,2007,515:3152.
[31] Lu L;Chen X;Huang X X et al.Revealing the maximum strength in nano twinned copper[J].Science,2009,323:607.
[32] L. Lu;R. Schwaiger;Z.W. Shan .Nano-sized twins induce high rate sensitivity of flow stress in pure copper[J].Acta materialia,2005(7):2169-2179.
[33] Li Y P;Zhang G P .On plasticity and fracture of nanostrctured Cu/X (X=Au,Cr) multilayers:The effects of length scale and interface/boundary[J].Acta Materialia,2010,58(11):3877.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%