采用基于密度函数理论的缀加平面波加局域轨道(APW+lo)方法和超晶胞方法对Nb含量为6.25%~37.5%Nb(摩尔分数)的Ti-Nb二元合金的能量、电子结构以及弹性性质进行了理论计算,研究Nb含量对Ti-Nb合金的β结构稳定性和弹性性质的影响.结果表明,随着Nb含量的升高,Ti-Nb合金的β结构稳定性提高,正方剪切常数C′以及弹性模量K、E和G呈单调增加.当Nb含量为9.87%时,正方剪切常数大于并接近于零,此时Ti-Nb合金的β结构稳定性最低,并具有最低的弹性模量.
参考文献
[1] | Long M;Rack HJ .Titanium alloys in total joint replacement--a materials science perspective.[J].Biomaterials,1998(18):1621-1639. |
[2] | M. Geetha;A.K. Singh;K. Muraleedharan .Effect of thermomechanical processing on microstructure of a Ti-13Nb-13Zr alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2001(1/2):264-271. |
[3] | H. Y. Kim;Y. Ikehara;J. I. Kim .Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J].Acta materialia,2006(9):2419-2429. |
[4] | S. Miyazaki;H.Y. Kim;H. Hosoda .Development and characterization of Ni-free Ti-base shape memory and superelastic alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(0):18-24. |
[5] | H.Y. Kim;T. Sasaki;K. Okutsu .Texture and shape memory behavior of Ti-22Nb-6Ta alloy[J].Acta materialia,2006(2):423-433. |
[6] | Zhang LC;Zhou T;Alpay SP;Aindow M;Wu MH .Origin of pseudoelastic behavior in Ti-Mo-based alloys[J].Applied physics letters,2005(24):41909-1-41909-3-0. |
[7] | 张新平,于思荣,何镇明,韩秋华.新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能[J].中国有色金属学报,2002(z1):78-82. |
[8] | Ying Long Zhou;Mitsuo Niinomi;Toshikazu Akahori .Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):283-290. |
[9] | T. Zhou;M. Aindow;S. P. Alpay;M. J. Blackburn;M. H. Wu .Pseudo-elastic deformation behavior in a Ti/Mo-based alloy[J].Scripta materialia,2004(3):343-348. |
[10] | Kuroda D.;Morinaga M.;Kato Y.;Yashiro T.;Niinomi M. .Design and mechanical properties of new beta type titanium alloys for implant materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):244-249. |
[11] | IKEHATA H;NAGASAKO N;FURUTA T;FUKUMOTO A MIWA K SAITO T .First-principles calculations for development of low elastic modulus Ti alloys[J].Physical Review B,2004,70:174113. |
[12] | K. Schwarz;P. Blaha;G. K. H. Madsen .Electronic structure calculations of solids using the WIEN2k package for material sciences[J].Computer physics communications,2002(1/2):71-76. |
[13] | BL-CHL P E;JEPSEN O;ANDERSEN O K .Improved tetrahedron method for Brillouin-zone integrations[J].Physical Review B,1994,49(23):16223-16233. |
[14] | ANDERSON O L .A simplified method for calculating the Debye temperature from elastic constants[J].Journal of Physics and Chemistry of Solids,1963,24:909-917. |
[15] | BORN M;HUANG K.Dynamical theory of crystal lattices[M].Oxford:clarendon Press,1954:141. |
[16] | Li T;Morris JW;Nagasako N;Kuramoto S;Chrzan DC ."Ideal" engineering alloys[J].Physical review letters,2007(10):5503-1-5503-4-0. |
[17] | Lee CM;Ju CP;Chern Lin JH .Structure-property relationship of cast Ti-Nb alloys.[J].Journal of oral rehabilitation,2002(4):314-322. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%