欢迎登录材料期刊网

材料期刊网

高级检索

利用循环伏安方法和恒电位阶跃技术研究Ni-SiC复合镀层电沉积行为.结果表明:Ni-SiC复合镀层和纯Ni镀层的形核/生长过程符合Scharifker-Hill三维成核模型;在低过电位下,Ni-SiC复合镀层形核/生长过程按三维连续成核机制;高过电位下,形核/生长过程遵循瞬时成核机制,与纯Ni镀层的形核/生长过程具有一致性;无论Ni-SiC复合镀层还是纯Ni镀层,形核弛豫时间tm随负电位的增大呈现有规律递减趋势,相应的,Im值基本相近;SiC粉体的引入导致Ni形核的过电位正移和tm的显著减小.

参考文献

[1] FLEISCHMANN M;THIRSK H R.Advances in pure and applied electrochemistry(Vol.3)[M].New York:Wiley-Interscience,1963:1-15.
[2] ARMSTRONG R D;HARRISON J A .Two-dimensional nucleation in electrocrystallization[J].Journal of the Electrochemical Society,1969,116(03):328-331.
[3] THIRSK H R;HARRISON J A.A guide to the study of electrode kinetics[M].London,UK:Academic Press,1972:174.
[4] MILCHEV A;STOYANOV S;KAISCHEV R .Atomistic theory of electrolytic nucleation-Ⅰ[J].Thin Solid Films,1974,22(03):255-265.
[5] BUDEVSKI E;BOSTANOV V;STAIKOV G.Electrocrystallization[A].New York:Annual Reviews Incorporation,1980:85-112.
[6] Darko Grujicic;Batric Pesic .Electrodeposition of copper: the nucleation mechanisms[J].Electrochimica Acta,2002(18):2901-2912.
[7] Min Gu .Initial stages of the electrocrystallization of Co-Cu alloys on GCE from the Co rich electrolytes[J].Electrochimica Acta,2007(13):4443-4448.
[8] E. Nouri;A. Dolati .The fractal study of Cu-Ni layer accumulation electrodeposition under diffusion-controlled[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2007(9):1769-1776.
[9] A.Sahari;A.Azizi;G.Schmerber;M.Abes;J.P.Bucher .Electrochemical nucleation and growth of Co and CoFe alloys on Pt/Si substrates[J].Catalysis Today,2006(3/4):257-262.
[10] MALFATTI C F;FERREIRA J Z;SANTOS C B;SOUZA B V FALLAVENA E P VAILLANT S BONING J P .NiP/SiC composite coatings:the effects of particles on the electrochemical behaviour[J].Corrosion Science,2005,47(03):567-580.
[11] Hongzhi Wang;Suwei Yao;Sowjun Matsumura .Electrochemical preparation and characterization of Ni/SiC gradient deposit[J].Journal of Materials Processing Technology,2004(3):299-302.
[12] F. Hu;K.C. Chan .Electrocodeposition behavior of Ni-SiC composite under different shaped waveforms[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2004(1/4):163-171.
[13] 查全性.电极过程动力学导论[M].北京:科学出版社,2004:306-311.
[14] Xu BS;Wang HD;Dong SY;Jiang B;Tu WY .Electrodepositing nickel silica nano-composites coatings[J].Electrochemistry communications,2005(6):572-575.
[15] Lidia Benea;Pier Luigi Bonora;Alberto Borello .Composite Electrodeposition to Obtain Nanostructured Coatings[J].Journal of the Electrochemical Society,2001(7):C461-C465.
[16] Benea L.;Bonora PL.;Borello A.;Martelli S.;Wenger F.;Ponthiaux P. Galland J. .Preparation and investigation of nanostructured SiC-nickel layers by electrodeposition[J].Solid state ionics,2002(1/4):89-95.
[17] Li J;Sun Y;Sun X;Qiao J .Mechanical and corrosion-resistance performance of electrodepo sited titania-nickel nanocomposite coatings[J].Surface & Coatings Technology,2005(2/3):331-335.
[18] Lin CS;Huang KC .Codeposition and microstructure of nickel-SiC composite coating electrodeposited from sulphamate bath[J].Journal of Applied Electrochemistry,2004(10):1013-1019.
[19] X. Peng;Y. Zhang;J. Zhao;F. Wang .Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles[J].Electrochimica Acta,2006(23):4922-4927.
[20] 禹萍,苏玉长,谭澄宇,冯钢.Ni-SiC和Ni-SiO2复合镀层性能的研究[J].表面技术,2001(03):27-29,44.
[21] LI Jing-feng,ZHANG Zhao,YIN Jun-ying,YU Geng-hua,CAI Chao,ZHANG Jian-qing.Electrodeposition behavior of nanocrystalline CoNiFe soft magnetic thin film[J].中国有色金属学会会刊(英文版),2006(03):659-665.
[22] 曹经倩.Cr(Ⅵ)对镍沉淀的影响[J].南昌航空工业学院学报,1994(01):14-11.
[23] GOMEZ E;MULLER C;PROUD W G;VALLES E .Electrodeposition of nickel on vitreous carbon:influence of potential on deposit morphology[J].Journal of Applied Electrochemistry,1992,22(09):872-876.
[24] 郭鹤桐;张三元.复合电镀技术[M].北京:化学工业出版社,2007:91-110.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%