硅酸盐通报 , 2011, 30(4): 930-933.
行星磨中研磨体级配对水泥熟料破碎效率的影响
张柏林 1, , 钱海燕 2, , 敖林 王志诚","id":"ccb09a3d-6c23-4b11-b1fb-0d0e045fe370","originalAuthorName":"王志诚"},{"authorName":"桂许春","id":"5b0bb787-2933-4baf-a39c-2cde7a6cf1c1","originalAuthorName":"桂许春"},{"authorName":"王文祥","id":"a08683a1-07b1-42af-839d-4e47dbda9471","originalAuthorName":"王文祥"},{"authorName":"韦进全","id":"b43e33f1-66d6-434e-9cbb-c75c0015827e","originalAuthorName":"韦进全"},{"authorName":"吕瑞涛","id":"5dc3ae35-4d5d-4c00-b2b1-533eb619028c","originalAuthorName":"吕瑞涛"},{"authorName":"王昆林","id":"15c2e1b0-a591-4c37-bc55-6bccc301f643","originalAuthorName":"王昆林"},{"authorName":"康飞宇","id":"8761ade0-74de-45c1-bc41-28d79ce4d639","originalAuthorName":"康飞宇"},{"authorName":"黄正宏","id":"bd480813-4c7c-4a4a-825e-1e8d5d5546dc","originalAuthorName":"黄正宏"},{"authorName":"吴德海","id":"1306bb1e-8a1d-4328-b91f-40eb7cc901c2","originalAuthorName":"吴德海"}],"doi":"","fpage":"49","id":"f112c2aa-3745-47c5-8e65-133941f96ad2","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b05f5c0d-8939-47c8-988e-48b87b3b0cf6","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"79a8e8af-7cd8-4bb2-b180-6188b27ac6ad","keyword":"薄壁碳纳米管","originalKeyword":"薄壁碳纳米管"},{"id":"cb5fecf0-d684-4ed9-9fef-116906a3b3f4","keyword":"薄壁指数","originalKeyword":"薄壁指数"}],"language":"zh","publisherId":"clkxygc200801012","title":"薄壁碳纳米管的制取","volume":"26","year":"2008"},{"abstractinfo":"以二甲苯/吡啶为碳/氮源,二茂铁为催化剂,在800 ℃下,由化学气相沉积法(CVD)制得了直径为10~30 nm的掺氮碳纳米管(CNT)阵列.用扫描电镜、透射电镜和拉曼光谱对其形貌和结构进行了表征.发现该碳管阵列具有竹节状结构,其中的氮含量沿碳管管径方向呈渐变趋势.随着碳管中氮含量的增加,竹节长度减小.研究了阵列的场发射性能,结果表明该碳管阵列是一种优秀的场发射材料:开启场强为0.37 V/μm,阈值场强为0.9 V/μm,场增强因子为37700.","authors":[{"authorName":"徐二阳","id":"b3c39e5b-8ff3-468f-848b-7653a5d48f1a","originalAuthorName":"徐二阳"},{"authorName":"王昆林","id":"b4f848b1-7793-4137-8339-584a79922678","originalAuthorName":"王昆林"},{"authorName":"韦进全","id":"39741334-86b0-4c98-8bbe-2620582efd65","originalAuthorName":"韦进全"},{"authorName":"朱宏伟","id":"7a6baef3-fbf1-4c53-979f-4d6360d79364","originalAuthorName":"朱宏伟"},{"authorName":"李祯","id":"939266b9-1f45-4f9c-a1e7-f1a5e784d2da","originalAuthorName":"李祯"},{"authorName":"桂许春","id":"2421c771-1f35-4b0d-9445-02813c233aa0","originalAuthorName":"桂许春"},{"authorName":"吴德海","id":"e4dd8c51-2915-407b-b5ee-4dcc6a044444","originalAuthorName":"吴德海"}],"doi":"","fpage":"1","id":"6ca96a85-9273-49ba-8943-7d9f19a00ae4","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fa4b1973-7bf1-4112-9595-151586872ad7","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"5789ea6a-b26b-4324-bae2-49eaa3aef6a8","keyword":"渐变掺氮","originalKeyword":"渐变掺氮"},{"id":"338aa3fa-7a91-4479-808d-d928a9f3a709","keyword":"场发射性能","originalKeyword":"场发射性能"}],"language":"zh","publisherId":"jsrclxb201102001","title":"渐变掺氮碳纳米管场的发射性能","volume":"32","year":"2011"},{"abstractinfo":"新型固体润滑剂FeS涂层的优异减摩耐磨性能与制备工艺密切相关. 利用低温离子渗硫和高速度火焰喷涂的方法制备了FeS固体润滑涂层. 在MM-200和FQP-100磨损实验机上对比研究了这两种涂层的摩擦磨损行为. 利用XRD分析了涂层的相结构, 用SEM观察了涂层的表面、截面及磨面形貌, 用划痕仪测定了涂层与基体的结合力. 结果表明, 离子渗硫FeS涂层的减摩性和耐磨性更好, 而热喷涂层的抗擦伤性更佳, 这是两种FeS涂层的组织结构不同所致.","authors":[{"authorName":"王海斗","id":"26be18f1-10d7-4a1f-ad2c-840fc78c7bb2","originalAuthorName":"王海斗"},{"authorName":"庄大明","id":"24be0fc9-061b-490c-a202-30803ead2947","originalAuthorName":"庄大明"},{"authorName":"王昆林","id":"8db75a6b-31f7-4a4a-881c-d01854c2b726","originalAuthorName":"王昆林"},{"authorName":"刘家浚","id":"1f610133-3cea-40e0-bf15-412083fba341","originalAuthorName":"刘家浚"},{"authorName":"方晓东","id":"b5bef1e3-4f7c-45b4-a9ce-b8526e6fac63","originalAuthorName":"方晓东"},{"authorName":"李永良","id":"74f114e7-1a46-472f-b659-0cb10c9ba253","originalAuthorName":"李永良"}],"categoryName":"|","doi":"","fpage":"1031","id":"0bc1c1c7-5f08-46ff-ac6e-708d6d5f3038","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"380cdffc-318e-4fa0-a3d0-385bad891eef","keyword":"FeS","originalKeyword":"FeS"},{"id":"8f5453b4-00d1-44d9-8c9e-16bb0a5d110a","keyword":"null","originalKeyword":"null"},{"id":"66f084c0-b99d-4a52-b0be-762f48ad9acf","keyword":"null","originalKeyword":"null"},{"id":"1273c061-aed3-44cc-8b58-1a5b3bd886e8","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_10_7","title":"FeS固体润滑涂层的结构分析及磨损行为比较","volume":"39","year":"2003"},{"abstractinfo":"介绍一种新型电弧喷涂技术--粉末复合电弧喷涂技术.运用粉末复合电弧喷涂技术对轴类零件和轴承座内孔进行喷涂.在喷涂前,对轴类零件粗车螺纹并进行挤压,使基体表面形成钩子形状,增加喷涂层和基体的机械结合力;对轴承座内孔进行堆焊,将大表面分割成小表面,减少了喷涂层收缩时形成的裂纹,提高了喷涂层与基体的结合强度.这两种方法适合大型轴类零件的表面强化和修复.","authors":[{"authorName":"韩雪峰","id":"44013bb8-fe6d-453e-9050-ee9d9a890977","originalAuthorName":"韩雪峰"},{"authorName":"朱张校","id":"b8192e5f-2305-4163-b06d-d3ec4b78bc67","originalAuthorName":"朱张校"},{"authorName":"王昆林","id":"f0a18410-3b5a-4b55-8db8-46a41ce35598","originalAuthorName":"王昆林"},{"authorName":"张晓宣","id":"de3353a9-22c5-4224-8aed-96c6048e49d4","originalAuthorName":"张晓宣"}],"doi":"10.3969/j.issn.1001-3660.2001.05.008","fpage":"24","id":"0c19762b-11f3-4089-b9d6-a2626120d43f","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"95534b9d-77d5-4ecf-b810-5669c89e9106","keyword":"电孤喷涂","originalKeyword":"电孤喷涂"},{"id":"9bb96057-a527-48cf-8bae-b2067cfb838d","keyword":"涂层","originalKeyword":"涂层"},{"id":"654ffd30-1dd7-420a-95e8-c6fe549d3d0f","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"7697f2ac-a0ba-4144-9f00-f3cc7eba0c55","keyword":"表面处理","originalKeyword":"表面处理"}],"language":"zh","publisherId":"bmjs200105008","title":"提高电弧喷涂层与基体结合强度的新工艺","volume":"30","year":"2001"},{"abstractinfo":"本工作采用超高真空气相氢渗透技术,在140—400℃温度范围内,测定了氢在纯Ni(不同冷变形量)中的渗透率、扩散系数和溶解度常数,研究了冷加工对氢渗透和扩散行为的影响。结果指出,在实验温度范围内,氢在纯Ni 中的渗透率和扩散系数均遵循Arrhenius 方程,纯Ni 的冷加工对氢渗透和扩散行为没有明显影响。","authors":[{"authorName":"王昆林","id":"4d757573-a661-4bc3-bc9e-b4f067facd69","originalAuthorName":"王昆林"},{"authorName":"董志娟","id":"c45fc4ea-2f19-4c78-9b25-dd22e55139eb","originalAuthorName":"董志娟"},{"authorName":"朱允明","id":"166b3c96-a4d2-450e-b8f3-2127f1e7f9d9","originalAuthorName":"朱允明"},{"authorName":"徐坚","id":"29fddc3b-f1c3-4f10-9ae6-96c82ce139a5","originalAuthorName":"徐坚"},{"authorName":"孙秀魁","id":"40764377-91ec-4b35-9e10-76f71c8f743e","originalAuthorName":"孙秀魁"}],"categoryName":"|","doi":"","fpage":"214","id":"10a86165-d8af-41db-bb87-360cb907e0b1","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"8d5f9605-ac14-471d-95ff-c85e7d140ace","keyword":"气相氢渗透","originalKeyword":"气相氢渗透"},{"id":"b23228c8-4651-4cb3-85fa-b02413f9b22c","keyword":"cold-working","originalKeyword":"cold-working"},{"id":"0889f422-6f4b-4707-8ad8-5778f6816c33","keyword":"pure nickel","originalKeyword":"pure nickel"}],"language":"zh","publisherId":"1005-3093_1992_3_4","title":"冷加工对氢在纯 Ni 中渗透和扩散行为的影响","volume":"6","year":"1992"},{"abstractinfo":"分别采用低温离子渗硫和等离子喷涂的方法在45#钢表面制备了硫化层.在摩擦磨损试验机上对比研究了这两种硫化层在油润滑条件下的摩擦学性能.利用XRD分析了硫化层的相结构,用SEM观察了硫化层的表面及磨面形貌并进行了能谱分析.结果表明,各硫化层的摩擦学性能明显优于原始基体表面,其中离子硫化层的减摩性和耐磨性更好,而热喷涂硫化层的抗擦伤性更佳.造成这种差别的主要原因在于两种硫化层的成膜机理不同.","authors":[{"authorName":"王海斗","id":"1e32cdc7-38f6-43e5-9057-3da6aad684d5","originalAuthorName":"王海斗"},{"authorName":"庄大明","id":"c2b4d36c-5345-4381-af98-e4b9455991df","originalAuthorName":"庄大明"},{"authorName":"王昆林","id":"42527e5d-e390-485b-ac8f-786cf5851783","originalAuthorName":"王昆林"},{"authorName":"刘家浚","id":"9daaefa8-e027-484f-9cc0-92419b83c7a6","originalAuthorName":"刘家浚"}],"doi":"10.3969/j.issn.1001-4381.2003.03.004","fpage":"14","id":"1f4c4476-ea2a-4139-abb1-e72d3b058641","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"0386f97f-81b6-4f83-af7b-7ab45e7fbfd5","keyword":"离子渗硫","originalKeyword":"离子渗硫"},{"id":"e0f897a0-3e24-40e8-a591-567396bc734a","keyword":"热喷涂","originalKeyword":"热喷涂"},{"id":"203cd9f7-6ec9-474c-9df6-76a891a0215d","keyword":"涂层","originalKeyword":"涂层"},{"id":"054efdfe-28d2-4c01-9417-003b85dc8520","keyword":"FeS","originalKeyword":"FeS"},{"id":"0fbbe533-2337-41e8-8767-c6d05a018b45","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"78b05323-3bd3-4651-b864-14a484651c2a","keyword":"抗擦伤","originalKeyword":"抗擦伤"}],"language":"zh","publisherId":"clgc200303004","title":"离子硫化层与热喷涂硫化层的摩擦学性能比较","volume":"","year":"2003"},{"abstractinfo":"为改善高速钢、模具钢和45钢的抗擦伤性能,采用低温离子渗硫技术在这三种材料表面生成了FeS固体润滑渗硫层.在QP-100球盘式摩擦磨损试验机上对比研究了这三种材料渗硫层在油润滑条件下的抗擦伤及摩擦学性能.利用SEM与XRD观察分析了渗硫层截面、擦伤面形貌及表面相结构, 利用AES及XPS分析了擦伤表面元素沿深度的分布及边界润滑膜化合物的价态.研究表明,渗硫后三种材料的抗擦伤及摩擦学性能都有明显改善,其中渗硫高速钢的抗擦伤性最好,其后依次为渗硫模具钢、渗硫45钢.分析认为,不同钢种渗硫层抗擦伤性能的差异主要由基体硬度、组织结构及耐蚀性三方面决定.","authors":[{"authorName":"王海斗","id":"5457193a-85e4-43f5-ad41-407a378f0ee0","originalAuthorName":"王海斗"},{"authorName":"庄大明","id":"ff3cd85d-0394-4e72-a5bb-9c741d2e70ae","originalAuthorName":"庄大明"},{"authorName":"王昆林","id":"3c33fa59-4959-4daa-9216-20fdc9067da5","originalAuthorName":"王昆林"},{"authorName":"刘家浚","id":"111d29f2-3a09-4699-82b9-625d301907c3","originalAuthorName":"刘家浚"}],"doi":"10.3969/j.issn.1001-4381.2003.02.002","fpage":"7","id":"2e772567-1e8f-477b-9c81-e2976daf56c0","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"2d29b7d6-377f-4a8f-be5a-2a3223962ea6","keyword":"离子渗硫","originalKeyword":"离子渗硫"},{"id":"c199f355-b1ae-4cd1-bea7-15ee18540a8b","keyword":"抗擦伤","originalKeyword":"抗擦伤"},{"id":"7b9ca118-7386-4f23-9815-30bdf3871c04","keyword":"油润滑","originalKeyword":"油润滑"},{"id":"ffe0673e-5e97-40f5-b995-931416bc00dc","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"}],"language":"zh","publisherId":"clgc200302002","title":"不同钢种离子渗硫层的抗擦伤性能研究","volume":"","year":"2003"},{"abstractinfo":"碳纳米管(CNTs)由于具有独特的一维结构、良好的化学稳定性、优异的电荷传导性能以及独特的光电性能,近些年被广泛应用于太阳能电池材料.综述了CNTs在聚合物太阳能电池、染料敏化太阳能电池以及无机太阳能电池中的应用研究进展.","authors":[{"authorName":"徐二阳","id":"10683cd6-f5ac-4973-80e7-a68e4a8884fa","originalAuthorName":"徐二阳"},{"authorName":"韦进全","id":"311dfc17-9c33-46f5-a173-c94f1d0b776c","originalAuthorName":"韦进全"},{"authorName":"王昆林","id":"07d0b724-1c4f-42c6-bee2-408e91b99d8b","originalAuthorName":"王昆林"},{"authorName":"朱宏伟","id":"31bb1a7b-b1c2-4274-8229-46d6d53b48f0","originalAuthorName":"朱宏伟"}],"doi":"","fpage":"6","id":"507cefaa-7c2e-4439-9e84-2489f95bfd7b","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"84690770-c2ac-4fec-9888-82266905a26d","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"4851bce9-8e30-4c38-b37b-bdb7678a8e3a","keyword":"光伏性能","originalKeyword":"光伏性能"},{"id":"352174db-d1ae-4e7f-bb17-cdf2a4e202d0","keyword":"太阳能电池","originalKeyword":"太阳能电池"}],"language":"zh","publisherId":"cldb200921002","title":"碳纳米管在太阳能电池中的应用研究进展","volume":"23","year":"2009"},{"abstractinfo":"采用低温离子渗硫工艺,分别在W6Mo5Cr4V2、5CrNiMo、2Cr13及45钢表面制备FeS固体润滑层.研究干摩擦条件下的摩擦磨损性能和渗硫层截面与磨痕形貌.结果表明,4种钢渗硫后减摩耐磨性能都明显提高,其中渗硫W6Mo5Cr4V2钢的摩擦学性能最好,渗硫5CrNiMo钢、渗硫45钢及渗硫2Cr13钢的摩擦学性能依次降低.基本硬度及组织结构不同是渗硫层摩擦学性能产生差异的主要原因.","authors":[{"authorName":"王海斗","id":"3adfb1fb-e1a6-4f8f-ab52-c9933510ed48","originalAuthorName":"王海斗"},{"authorName":"庄大明","id":"2fe64e72-0bd2-4354-88ab-5e92f98756bc","originalAuthorName":"庄大明"},{"authorName":"王昆林","id":"474c30f4-9d44-491e-9a3d-333e1af2977a","originalAuthorName":"王昆林"},{"authorName":"刘家浚","id":"b71edb1a-92d8-4cea-8385-6c2aafbb1271","originalAuthorName":"刘家浚"},{"authorName":"方晓东","id":"3f364410-d135-49af-a8bb-0c46fbaaeef9","originalAuthorName":"方晓东"},{"authorName":"李永良","id":"51387ba0-a6cc-4082-90bb-54c4a2034fca","originalAuthorName":"李永良"}],"doi":"10.3969/j.issn.1009-6264.2002.04.008","fpage":"30","id":"62dd470c-286a-4636-adf2-547d7c4e1199","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"35f3152b-9f86-40ba-a9d1-dbddaede3d3a","keyword":"离子渗硫","originalKeyword":"离子渗硫"},{"id":"e4e9edf4-ebb9-4cb1-bdba-a286a581d009","keyword":"硫化亚铁","originalKeyword":"硫化亚铁"},{"id":"1b853456-ef2b-464f-ac23-d859a40f54c4","keyword":"干摩擦","originalKeyword":"干摩擦"},{"id":"3acd851c-a7df-44d1-99c2-1659710326fc","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"}],"language":"zh","publisherId":"jsrclxb200204008","title":"低温离子渗硫层的干摩擦学性能对比研究","volume":"23","year":"2002"},{"abstractinfo":"利用MM-200摩擦磨损试验机研究了在干摩擦和水润滑条件下铸型尼龙(MC尼龙)及其复合材料的摩擦磨损性能,并利用红外光谱分析了材料在不同磨损条件下发生的物理化学变化.研究结果表明,在干摩擦条件下,当载荷与速度的积(Pv值)小于84 N@m/s时玻璃纤维增强MC尼龙复合材料(GF/MC)的摩擦系数和磨损率都比MC尼龙低;当Pv值大于84 N@m/s时,GF/MC的摩擦系数略高于MC尼龙,而磨损率则远大于MC尼龙,随Pv值的改变,磨损机理发生了变化.在水润滑条件下二者的摩擦系数降低,GF/MC的耐磨性比纯基体显著提高.光谱分析表明,MC尼龙及其复合材料在摩擦过程中会发生晶型转变,在干摩擦后α晶型减少,γ晶型增多,在水润滑后a晶型增多,而γ晶型减少","authors":[{"authorName":"李国禄","id":"6ae4f64d-1668-4d45-b528-107c0d723bdb","originalAuthorName":"李国禄"},{"authorName":"王昆林","id":"c1f8e4d2-c7f6-49bb-bc2e-63b3f629e249","originalAuthorName":"王昆林"},{"authorName":"刘金海","id":"16a40df4-5299-41b3-8d26-2cc26a08b700","originalAuthorName":"刘金海"},{"authorName":"刘家俊","id":"fae3e3ca-b5d7-41fb-b8bd-867c0b7613e5","originalAuthorName":"刘家俊"},{"authorName":"崔国平","id":"95660fa2-e887-4428-b924-534c6763b2e2","originalAuthorName":"崔国平"}],"doi":"","fpage":"146","id":"6ad446bd-cedd-4cb9-88a1-a2a8e6710981","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9c487853-61c7-4182-81f2-4b0a6d251e19","keyword":"铸型尼龙","originalKeyword":"铸型尼龙"},{"id":"a73fac28-2933-4d81-ae38-2941eec89137","keyword":"玻璃纤维","originalKeyword":"玻璃纤维"},{"id":"25caf405-df3a-4d8f-905d-cda2c7990aa4","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"8df93b2a-0008-4c1b-b5cc-065f05b442b2","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"ea2d9dfa-2e9e-440b-ab82-21cb641db655","keyword":"晶型转变","originalKeyword":"晶型转变"}],"language":"zh","publisherId":"gfzclkxygc200106036","title":"铸型尼龙及其复合材料的摩擦学性能和晶型转变","volume":"17","year":"2001"}],"totalpage":33,"totalrecord":325}