欢迎登录材料期刊网

材料期刊网

高级检索

为了研究TiAl合金中β相稳定元素对显微组织及相变温度的影响,本文在Ti-43Al合金的基础上,通过单独与复合添加Nb、Cr、Mo 3种合金元素,获得了新型β/γ-TiAl合金,并系统研究了3种元素的作用规律.结果发现:Nb促使合金形成片层结构,Cr、Mo使合金分别形成近γ组织和针状魏氏组织;3种元素对β相的稳定能力为Mo>Nb>Cr;复合添加Nb、Cr、Mo元素对β相的稳定作用比单一添加更为显著;3种不同元素对α+β+γ三相区范围有显著影响,对α2+γ→α转变的共析温度(te)影响较大,而对γ→α的转变温度(tα)影响较小,Ti-43Al-4Nb-2Mo-0.2B合金的α+β+γ三相区最窄约为15℃,而Ti-43Al-6Nb-0.2B合金的α+β+γ三相区最宽约为95℃,Ti-43Al-4Nb-1Cr-1Mo-0.2B合金的α+β+γ三相区为55℃。

To study the effect ofβstabilized elements on microstructure and phase transformation temperature, the novel β/γ-TiAl alloys were obtained by adding Nb, Cr, Mo individually or together into Ti-43Al base alloy. The effects of the additions were studied systematically. It is found that the alloy containing Nb element tends to form lamellar structure, and the alloy containing Cr or Mo element tends to form near γ or widmannstatten structure, respectively. The stabilizing ability on the β phase for the three elements is Mo>Nb>Cr. The addition of combinated Nb, Cr and Mo results in greater influence on stabilizing theβphase than that of the individual addition of Nb, Cr, or Mo. The effects of these three elements on theα+β+γphase region and the eutectoid temperature ( te:α2+γ→α) are prominent and obvious, however the influence on the temperature of γ→α transition ( tα) is not evident. Theα+β+γphase region is the most narrow of only 15 ℃for the Ti-43Al-4Nb-2Mo-0. 2B alloy, the widest is about 95 ℃ for the Ti-43Al-6Nb-0. 2B alloy, and 55 ℃ for the Ti-43Al-4Nb-1Cr-1Mo-0.2B alloy.

参考文献

[1] DIMIDUK D M .Gamma titanium aluminide alloys:anassessment within the competition of aerospace structuralmaterials[J].Materials Science and Engineering A,1999,263(2):281-288.,1999.
[2] YANG Z W,HE P,ZHANG L X,et al .Microstruc-tural evolution and mechanical properties of the joint ofTiAl alloysand C/SiC composites vacuum brazed withAg-Cu filler metal[J].Materials Characterization,2012,62(9):825-832.,2012.
[3] LASALMONIE A .Intermetallics:why is it so difficultto introduce them in gas turbine engines[J].Intermetallics,2006,4:1123-1129.,2006.
[4] IMAYEV R M,IMAYEV V M,OEHRING M,et al .Alloy design concepts for refined gamma titaniumaluminide based alloys[J].Intermetallics,2007,15(4):451-460.,2007.
[5] SUN F S,CAO C X,KIM S E,et al .Alloyingmechanism of beta stabilizers in a TiAl alloy[J].Metallurgical and Materials Transactions A,2001,32(7):1573-1589.,2001.
[6] WU X H,HU D .Microstructural refinement in castTiAl alloys by solid state transformations[J].ScriptaMaterialia,2005,52(8):731-734.,2005.
[7] TETSUIA T,SHINDO K,KAJIB S,et al .Fabricationof TiAl components by means of hot forging andmachining[J].Intermetallics,2005,13(9):971-978.,2005.
[8] HE W W,TANG H P,LIU H Y,et al .Microstruc-ture and tensile properties of containerless near-iso-thermally forged TiAl alloys[J].Transactions of Non-ferrous Metals Society of China,2011,12(21):2605-2609.,2011.
[9] NIUHZ,KONGFT,XIAOSL,et al .Effectofpack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy[J].Intermetallics,2012,21(1):97-104.,2012.
[10] 邓志海,李金山,张铁邦,钟宏,常辉.β凝固TiAl合金的包套锻造及组织优化[J].塑性工程学报,2012(02):43-48.
[11] NIU H Z,KONG F T,CHEN YY,et al .Microstructure characterization and tensile properties of β phase containing TiAl pancake[J].Journal of Alloys and Compounds,2011,509(42):10179-10184.,2011.
[12] KIM Y W,DIMIDUK D,WOODWARD C.Develop-ment of betaγ-TiAl alloys:Opening robust processing and greater application potential for TiAl-base alloys [C]//The 11th World Conference on Titanium.Kyoto:The Japan Institute of Metals,2007.,2007.
[13] CLEMENS H,CHLADIL H F,WALLGRAM W,et al .In and ex situ investigations of theβ-phase in a Nb and Mo containing γ-TiAl based alloy[J].Intermetallics,2008,16(6):827-833.,2008.
[14] NIU H Z,CHEN Y Y,XIAO S L,et al .Microstruc-ture evolution and mechanical properties of a novel betaγ-TiAl alloy[J].Intermetallics,2012,31
[15] XU W C,SHAN D B,ZHANG H,et al .Effects of extrusion deformation on microstructure,mechanical properties and hot workability of β containing TiAl alloy[J].Materials Science and Engineering:A,2013,571(1):199-206.,2013.
[16] 肖代红,黄伯云.铸造Ti-47A1-8Cr-2Nb合金的低温超塑性及其组织演变[J].中国有色金属学报,2008(10):1749-1755.
[17] MAYER S,SAILER C,SCHMOELZER T,et al .On phase equilibria and phase transformations in β/γ-TiAl alloys:a short review[J].BHM,2011,156(11):438-442.,2011.
[18] LIN J P,XU X J,WANG Y H,et al .High tempera-ture deformation behaviors of a high Nb containing TiAl alloy[J].Intermetallics,2007,15:668-674.,2007.
[19] 关兴举,杨慧敏,张莉,田金华,苏彦庆,郭景杰,傅恒志.W对γ-TiAl基合金单向凝固组织的影响[J].特种铸造及有色合金,2009(02):108-111.
[20] 陈玉勇,张树志,孔凡涛,刘祖岩,林均品.新型β-γTiAl合金的研究进展[J].稀有金属,2012(01):154-160.
[21] DOBROMYSLOV A V,ELKIN V A .Martensitic transformation and metastableβ-phase in binary titani-um alloys with d-metals of 4-6 periods[J].Scripta Materialia,2001,44(12):905-910.,2001.
[22] CHLADIL H F,CLEMENS H,LEITNER H,et al .Phase transformations in high niobium and carbon containing γ-TiAl based alloys[J].Intermetallics,2006,14:1194-1198.,2006.
[23] 李建波,刘咏,王岩,刘彬,杨广宇.微量B对铸态TiAl基合金显微组织及热变形行为的影响[J].粉末冶金材料科学与工程,2012(04):414-422.
[24] JIN Y,WANG J N,YANG J .Microstructure refine-ment of cast TiAl alloys by beta solidification[J].Scripta Materialia,2004,51(2):113-117.,2004.
[25] WANG Y,WANG J N,YANG J,et al .Control of a fine-grained microstructure for cast high-Cr TiAl alloys[J].Materials Science and Engineering A,2005,392:235-239.,2005.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%