Ti/Zr-based icosahedral quasicrystals are a kind of promising hydrogen storage materials, however their absorption regeneration after oxidation-poisoning has been scarcely studied. This work is intended to investigate the deuterium-storage regeneration of a suction-cast Ti36Zr40Ni20Pd4 quasicrystal. It was found that only through hot vacuuming the quasicrystal could be refreshed from air-flow poisoning to absorb deuterium in two cycles. During the first absorption course, a pregnancy period was observed before the real deuterium uptake while deuterium was loaded rapidly during the second one. The deuterium concentration in the alloy can reach 0.011 mol?D2/(g?M) (corresponding to a hydrogen mass percent of 2.2%. D2 and M denote molecular deuterium and the metallic alloy). But the loaded deuterium was very difficult to release completely even by eight-stage desorption at different temperatures. After the second desorption, the quasicrystal phase remained in a small volume, as though the desorption temperature was beyond the crystallization temperature of the quasicrystal. This probably is attributed to the solution function of residual deuterium in the alloy.
参考文献
[1] | |
[2] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%