欢迎登录材料期刊网

材料期刊网

高级检索

用阳极氧化法在草酸溶液或硫酸溶液中制备了有序阵列孔洞的氧化铝膜.研究了在不同温度下、不同气氛中退火对多孔氧化铝膜荧光性能的影响.结果表明,随着退火温度的升高,发光带的强度也随之增强;与此同时,发光带的峰位出现蓝移.当退火温度=500℃时,在草酸中制备的氧化铝膜的发光强度最强;而在硫酸中制备的膜,其发光最强的退火温度为400℃.当 ≤400℃时,氧化铝膜的发光强度基本上与退火气氛无关;当 =500℃时,在草酸中制备的膜在空气中退火后的发光强度高于在真空中退火后的发光强度.在草酸中制备的氧化铝膜的发光带明显比在硫酸中制备的膜强得多.电子自旋共振的实验结果表明,蓝光发光带来自多孔氧化铝膜中的心.我们还对多孔氧化铝膜发光特性的机制进行探讨.

Alumina membranes with ordered pore arrays were prepared via anodization in an oxalic or sulfuric acid.
Photoluminescence behavior of porous alumina membranes was studied by annealing the membranes in air or in vacuum of about 1×10-3Pa
at different temperatures. The results show that the intensity of the photoluminescence (PL) band increases with the annealing temperature and
the PL band exhibits a blue shift at the same time. The intensity of the PL band reaches its maximum for anodic alumina membranes prepared in oxalic
acid when the annealing temperature Ta=500℃. While for membranes prepared in sulfuric acid, the maximum PL intensity appears at
Ta=400℃. When Ta≤400℃, the PL intensities are almost independent of the annealing atmosphere; while the PL intensity of the membrane prepared in the oxalic acid after annealed in
air is higher than that annealed in vacuum when Ta=500℃. The intensity of the PL band is much higher for alumina membranes prepared
in oxalic acid than that prepared in sulfuric acid. Electron spin resonance results verify that the blue PL band comes from the F+ centers in porous
alumina membranes. Mechanisms of the photoluminescence characterization of porous alumina membranes were discussed.

参考文献

[1] Keller F, Hunter M S, Robinson D L. J. Electrochem. Soc., 1953, 100 (9): 411--419.
[2] Tonucci R J, Justus B L, Campillo A J, et al. Science, 1992, 258: 783--785.
[3] Franzke D, Wokaun A. J. Phys. Chem., 1992, 96 (15): 6377--6381.
[4] Kawai S, Ishiguro I. J. Electrochem. Soc., 1976, 123 (7): 1047--1051.
[5] Du Y, Cai W L, Mo C M, et al. Appl. Phys. Lett., 1999, 74 (20): 2951--2953.
[6] Masuda H, Satoh M. Jpn. J. Appl. Phys., Part 2 1996, 35 (B1): L126--L129.
[7] Phillipp H R. J. Phys. Chem. Solids, 1971, 32 (8): 1935--1945.
[8] Vassiliou J K, Mehrotra V, Russell M W, et al. J. Appl. Phys., 1993, 73 (10): 5109--5116.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%