欢迎登录材料期刊网

材料期刊网

高级检索

以环氧树脂为基体,经硅烷活化处理的空心玻璃微珠(HGM)为填充剂,制备了高强浮力材料.采用XRD、FRIR分析了HGM的结构和硅烷处理效果,通过密度测试和单轴静态压缩试验研究了HGM的类型和含量对浮力材料性能的影响,利用SEM和吸水率试验研究了浮力材料的断裂特性和吸水性.结果表明:HGM为无定形结构;硅烷分子接枝在HGM表面,使得HGM与环氧树脂完好结合且两者界面没有间隙沟槽;HGM的较大比压缩强度有利于提高浮力材料的性能;高强浮力材料密度为0.645~0.850 g/cm3,抗压强度为60~93 MPa,比压缩强度为92~112 MPa·cm3·g-1;HGM 含量较少时,浮力材料断裂表面HGM破裂处的基体环氧树脂有拖尾特征,HGM含量增多时,HGM的破坏程度不断增大直至完全破坏;浮力材料具有较好的抗吸水性.

参考文献

[1] Nikhil G,Ye R,Porfiri M.Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams[J].Composites Part B:Engineering,2010,41(3):236-245.
[2] Nikhil G,Ruslan N.Tensile properties of glass microballoonepoxy resin syntactic foams[J].Journal of Applied Polymer Science,2006,102(2):1254-1261.
[3] 卢子兴,石上路,邹波,等.环氧树脂复合泡沫材料的压缩力学性能[J].复合材料学报,2005,22(4):17-22.Lu Zixing,Shi Shanglu,Zhou Bo,et al.Compressive behavior of epoxy syntactic foam[J].Acta Materiae Compositae Sinica,2005,22(4):17-22.
[4] 刘元俊,冯永强,贺传兰,等.玻璃微珠增强硬质聚氨酯泡沫塑料的压缩性能及热稳定性[J].复合材料学报,2006,23(2):65-70.Liu Yuanjun,Feng Yongqiang,He Chuanlan,et al.Compressive properties and thermal stability of glass bead reinforced rigid polyurethane foams[J].Acta Materiae Compositae Sinica,2006,23(2):65-70.
[5] 潘顺龙,张敬杰,宋广智.深潜用空心玻璃微珠和固体浮力材料的研制及其研究现状[J].热带海洋学报,2009,28(4):17-21.Pan Shunlong,Zhang Jingjie,Song Guangzhi.Advances in hollow glass microsphere and solid buoyancy material for deepwater application[J].Journal of Tropical Oceanography,2009,28(4):17-21.
[6] 陈先,周嫒,梁忠旭.深海用可加工固体浮力材料及其制备方法:中国,200610043524.4[P].2006-10-11.
[7] 王啟峰,杜竹玮.环氧树脂基固体浮力材料的研制及表征[J].精细化工,2005,22(3):174-176.Wang Qifeng,Du Zhuwei.Preparation and characterization of solid buoyancy materials based on epoxy resins[J].Fine Chemicals,2005,22(3):174-176.
[8] 殷建港.高强度低密度环氧树脂复合材料研究[J].工程塑料应用,1994,22(3):7-10.Yin Jian'gang.Study of the high strength and low density epoxy composites[J].Engineering Plastics Application,1994,22(3):7-10.
[9] 何斌,杨勇,马晓雄.高强度浮力材料的研制[J].中国塑料,2008,22(10):46-50.He Bin,Yang Yong,Ma Xiaoxiong.Preparation of high strength deep-sea buoyancy material[J].China Plastics,2008,22(10):46-50.
[10] 张东兴,黄龙男,王荣国,等.硅烷偶联剂对滑石粉、空心玻璃微珠表面改性的研究[J].纤维复合材料,2000,15(2):10-12.Zhang Dongxing,Huang Longnan,Wang Ronguo,et al.Study on the modification of surface of talc powder and hollow microspheres with silane coupling agent[J].Fiber Composites,2000,15(2):10-12.
[11] Leboda R,Gunko V M,Marciniak M.Structure of chemical vapor deposition titania/silica gel[J].Journal of Colloid and Interface Science,1999,218(1):23-29.
[12] 于洪浩,薛向欣,黄大威.铁尾矿制备白炭黑的实验研究[J].过程工程学报,2008,8(2):300-304.Yu Honghao,Xue Xiangxin,Huang Dawei.Preparation of precipitated silica powder from iron ore tailing[J].The Chinese Journal of Process Engineering,2008,8 (2):300-304.
[13] 顾健,武高辉.表面改性对空心微珠/环氧复合材料性能的影响[J].中国有色金属学报,2007,17(S):229-232.Gu Jian,Wu Gaohui.Effect of surface-modification of fly ash on properties of fly ash/epoxy composites[J].The Chinese Journal of Nonferrous Metals,2007,17(S):229-232.
[14] Mouanda B.Grafting polyvinylimidazole onto silicon wafers via a copolymer of methacrylate epoxy and methacrylatefunctional silane coupling agents[J].Polymer,1997,38(21):5301-5306.
[15] Miller A C,Berg J C.Effect of silane coupling agent adsorbate structure on adhesion performance with a polymeric matrix[J].Composites Part A:Applied Science and Manufacturing,2003,34(4):327-332.
[16] Kim H S,Khamis M A.Fracture and impact behaviors of hollow micro-sphere/epoxy resin composites[J].Composites Part A:Applied Science and Manufacturing,2001,32 (9):1311-1317.
[17] 潘鹏举.深海用聚合物基浮力材料制备及性能表征[D].浙江:浙江大学,2005.
[18] Antoon M K,Koenig J L,Serafini T.Fourier transform infrared study of the reversible interaction of water and a crosslinked epoxy matrix[J].Journal of Polymer Science Part A-2:Polymer Physics,1981,19(10):1567-1575.
[19] Zhou J M,Lucas J P.Effects of water on a graphite/epoxy composite[J].Journal of Thermoplastic Composite Materials,1996,9(4):316-328.
[20] Nikhil G,Eyassu W.Hygrothermal studies on syntactic foams and compressive strength determination[J].Composite Structures,2003,61(4):311-320.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%